УТВЕРЖДАЮ

Первый заместитель генерального директора – заместитель по научной работе ФГУП «ВНИИФТРИ»

А.Н. Щипунов

2017 г.

ИНСТРУКЦИЯ

МУЛЬТИМЕТРЫ ЦИФРОВЫЕ ПРЕЦИЗИОННЫЕ 8071R, 8080R, 8081R, 8104R, 8109R

МЕТОДИКА ПОВЕРКИ МП-610-004-2017

1 ОБЩИЕ ПОЛОЖЕНИЯ

Настоящая методика поверки распространяется на мультиметры цифровые прецизионные 8071R, 8080R, 8081R, 8104R, 8109R (далее — мультиметры), изготавливаемые фирмой «Transmille Ltd.», Великобритания, и предназначенные для измерений напряжения постоянного и переменного тока, силы постоянного и переменного тока, электрического сопротивления, частоты, температуры термопар.

Методика поверки предусматривает методы первичной и периодической поверок и порядок оформления результатов поверки.

Интервал между поверками 1 год.

2 ОПЕРАЦИИ ПОВЕРКИ

При поверке выполняются операции, указанные в таблице 1.

Таблица 1 – Операции поверки

Наименование операции	Номер	Проведение с	операции при
	пункта	первичной	периодичес
	методики	поверке	кой поверке
	поверки		
1 Внешний осмотр	7.1	Да	Да
2 Опробование	7.2	Да	Да
3 Определение метрологических характеристик	7.3		
3.1 Определение абсолютной погрешности измерений напряжения постоянного тока	7.3.1	Да	Да
3.2 Определение абсолютной погрешности измерений напряжения переменного тока	7.3.2	Да	Да
3.3 Определение абсолютной погрешности измерений силы постоянного тока	7.3.3	Да	Да
3.4 Определение абсолютной погрешности измерений силы переменного тока	7.3.4	Да	Да
3.5 Определение абсолютной погрешности измерений электрического сопротивления постоянному току	7.3.5	Да	Да
3.6 Определение абсолютной погрешности измерений частоты	7.3.6	Да	Да
3.7 Определение абсолютной погрешности измерений температуры термопар	7.3.7	Да	Да
4 Подтверждение соответствия программного обеспечения	7.4	Да	Да

3 СРЕДСТВА ПОВЕРКИ

- 3.1 При проведении поверки применяют средства поверки, указанные в таблице 2.
- 3.2 Допускается применять другие средства поверки, обеспечивающие измерение метрологических характеристик с требуемой точностью.
- 3.3 Все средства поверки должны быть исправны, поверены и иметь действующие свидетельства о поверке.

Таблица 2 – Средства поверки

Номер пункта	Наименование и тип (условное обозначение) основного и вспомогательного								
методики	средства поверки, обозначение нормативного документа, регламентирующего								
поверки	технические требования, и (или) метрологические и основные технические								
	характеристики средства поверки								
7.3.1, 7.3.2,	Калибратор многофункциональный 5720А (диапазон воспроизведения								
7.3.5	напряжения постоянного тока от 0 до 1000 В, пределы допускаемой								
	абсолютной погрешности $\pm (3,5-7,5)\cdot 10^{-6}\cdot U_{ycr}$; диапазон воспроиз-								
	ведения напряжения переменного тока от 0 до 1000 В в диапазоне								
	частот от 10 Гц до 1 МГц, пределы допускаемой абсолютной								
	погрешности $\pm (45-2700)\cdot 10^{-6}\cdot U_{ycr}$; диапазон воспроизведения								
	сопротивления постоянному току от 0 до 100 МОм, пределы								
	допускаемой абсолютной погрешности $\pm (8,5-100)\cdot 10^{-6}\cdot R_{yct}$)								
7.3.3, 7.3.4,	Калибратор многофункциональный 3041R (диапазон воспроизведения								
7.3.6, 7.3.7	силы постоянного тока от 0 до 30 А, пределы допускаемой								
	абсолютной погрешности $\pm (0.005-0.08)\cdot 10^{-2}\cdot I_{ycr}$; диапазон воспро-								
	изведения силы переменного тока от 0 до 30 Å в диапазоне частот от								
	10 Гц до 10 кГц, пределы допускаемой абсолютной погрешности								
	$\pm (0.06-0.8)\cdot 10^{-2}\cdot I_{vcr}$); со встроенной опцией FRQ диапазон воспро-								
	изводимых частот от 1 Гц до 10 МГц, пределы допускаемой								
	относительной погрешности $\pm 1 \cdot 10^{-4}$ %)								
7.3.5	Калибратор постоянного тока (рабочий эталон 2 разряда) НК4-1								
	(диапазон воспроизведения сопротивления постоянному току от 10 ³								
	до 10^{19} Ом, пределы допускаемой относительной погрешности								
	±(0,05-30) %)								

4 ТРЕБОВАНИЯ БЕЗОПАСНОСТИ

К проведению поверки допускаются лица, изучившие руководство по эксплуатации мультиметра и прошедшие проверку знаний правил техники безопасности и эксплуатации электроустановок напряжением до 1 кВ.

5 УСЛОВИЯ ПОВЕРКИ

5.1 При проведении поверки должны соблюдаться следующие условия:

•	температура окружающего воздуха, °С	от 18 до 28;
•	относительная влажность воздуха, %	от 30 до 80;
•	атмосферное давление, кПа	от 84 до 106;
•	питание от сети переменного тока	
	напряжение, В	от 198 до 242
	частота, Гц	от 49 до 51.

5.2 К поверке допускаются лица, аттестованные на право поверки средств измерений электрических величин, изучившие техническую и эксплуатационную документацию и прошедшие инструктаж по технике безопасности.

6 ПОДГОТОВКА К ПОВЕРКЕ

Перед поверкой должны быть выполнены следующие подготовительные работы:

- проверены документы, подтверждающие электрическую безопасность;
- проведены технические и организационные мероприятия по обеспечению безопасности проводимых работ в соответствии с действующими положениями ГОСТ 12.2.007.0-75 и ГОСТ 12.2.007.3-75.

7 ПРОВЕДЕНИЕ ПОВЕРКИ

7.1 Внешний осмотр

При внешнем осмотре должно быть установлено соответствие поверяемого мультиметра следующим требованиям:

- комплектность должна соответствовать требованиям эксплуатационной документации;
- все органы управления и коммутации должны действовать плавно и обеспечивать надежность фиксации во всех позициях;
- не должно быть механических повреждений корпуса, лицевой панели, органов управления. Все надписи должны быть четкими и ясными;
- все разъемы, клеммы и измерительные провода не должны иметь повреждений и должны быть чистыми.

При наличии дефектов поверка завершается, поверяемый мультиметр бракуется и направляется в ремонт.

7.2 Опробование

Проверить работоспособность дисплея и функциональных клавиш. Режимы, отображаемые на дисплее, при переключении режимов измерений и нажатии соответствующих клавиш, должны соответствовать требованиям руководства по эксплуатации.

При неверном функционировании мультиметр бракуется и направляется в ремонт.

7.3 Определение метрологических характеристик

7.3.1 Определение абсолютной погрешности измерений напряжения постоянного тока

Определение абсолютной погрешности измерений напряжения постоянного тока проводить методом прямых измерений с помощью калибратора многофункционального 5720А.

Измерения проводить в следующем порядке:

- 1) выставить нуль мультиметра. Подключить провода к входу мультиметра V+; V- и закоротить. Выбрать режим «авто» диапазона, нажав кнопку Range Auto (убедитесь, что функция «авто» диапазона установлена, надпись Range Auto появилась на дисплее, затем запустить установку нуля, нажав кнопку NULL;
- 2) подключить к входу поверяемого мультиметра калибратор;
- 3) перевести калибратор в режим воспроизведения напряжения постоянного тока;
- 4) установить на выходе калибратора напряжение постоянного тока 0 мВ;
- 5) запустить процесс измерений;
- 6) снять показания поверяемого мультиметра в точках, указанных в графе 2 таблицы 3 (для мультиметров 8071R, 8109R) или в графе 2 таблицы 4 (для мультиметров 8080R, 8081R, 8104R);
- 7) определить допустимые значения результатов измерений. Результаты измерений мультиметров 8071R, 8109R записать в графу 3 таблицы 3. Результаты измерений мультиметров 8080R, 8081R, 8104R записать в графу 3 таблицы 4.

Таблица 3 — Режим измерений напряжения постоянного тока мультиметров цифровых прецизионных 8071R, 8109R

	8071R, 8109R													
Верхнее	Поверяемая	Результаты	Пределы	Допускаемое значение		Заключение о								
значение	отметка	измерений	допускаемой	результата изг	мерений, В	соответствии								
предела			абсолютной	МИН	макс									
измерений			погрешности, ±,											
			В											
1	2	3	4	5	6	7								
100 мВ	0 мВ		0,0004 мВ	-0,0004 мВ	0,0004 мВ									
	50 мВ		0,001365 мВ	49,998635 мВ	50,001365 мВ									
	– 50 мВ		0,001365 мВ	-50,001365 мВ	-49,998635 мВ									
	100 мВ		0,00233 мВ	99,99767 мВ	100,00233 мВ									
	- 100 мВ		0,00233 мВ	-100,00233 мВ	-99,99767 мВ									

Продолже	ние таблицы 3					
1	2	3	4	5	6	7
1 B	0 B		1,4·10 ⁻⁶	-1,4·10 ⁻⁶	1,4·10 ⁻⁶	
	0,5 B		0,00000845	0,49999155	0,50000845	
	-0,5 B		0,00000845	-0,50000845	-0,49999155	
	1 B		0,0000155	0,9999845	1,0000155	
	-1 B		0,0000155	-1,0000155	-0,9999845	
10 B	0 B		1,4.10-6	-1,4·10 ⁻⁶	1,4.10-6	
	1 B		0,0000283	0,9999717	1,0000283	
	-1 B		0,0000283	-1,0000283	-0,9999717	
	2 B		0,0000426	1,9999574	2,0000426	
	-2 B		0,0000426	-2,0000426	-1,9999574	
	3 B		0,0000569	2,9999431	3,0000569	
	-3 B		0,0000569	-3,0000569	-2,9999431	
	4 B		0,0000712	3,9999288	4,0000712	
	-4 B		0,0000712	-4,0000712	-3,9999288	
	5 B		0,0000855	4,9999145	5,0000855	
	-5 B		0,0000855	-5,0000855	-4,9999145	
	6 B		0,0000998	5,9999002	6,0000998	
	-6 B		0,0000998	-6,0000998	-5,9999002	
	7 B		0,0001141	6,9998859	7,0001141	
	-7 B		0,0001141	-7,0001141	-6,9998859	
	8 B		0,0001284	7,9998716	8,0001284	
	-8 B		0,0001284	-8,0001284	-7,9998716	
	9 B		0,0001427	8,9998573	9,0001427	
	-9 B		0,0001427	-9,0001427	-8,9998573	
	10 B		0,000157	9,999843	10,000157	
	-10 B		0,000157	-10,000157	-9,999843	
100 B	0 B		1,8·10 ⁻⁶	-1,8·10 ⁻⁶	1,8·10 ⁻⁶	
	50 B		0,00128	49,99872	50,00128	
	-50 B		0,00128	-50,00128	-49,99872	
	100 B		0,00238	99,99762	100,00238	
	-100 B		0,00238	-100,00238	-99,99762	
1000 B	500 B		0,0138	499,9862	500,0138	
	-500 B		0,0138	-500,0138	-499,9862	
	1000 B		0,0248	999,9752	1000,0248	
	-1000 B		0,0248	1000,0248	-999,9752	

Таблица 4 — Режим измерений напряжения постоянного тока мультиметров цифровых прецизионных $8080R,\,8081R,\,8104R$

	8080R, 8081R, 8104R												
Верхнее значение	Поверяемая отметка	Результаты измерений	Пределы допускаемой	Допускаемое значение результата измерений, В		Заключение о соответствии							
предела			абсолютной	МИН	макс								
измерений			погрешности,										
			±, B										
1	2	3	4	5	6	7							
100 мВ	0 мВ		0,00017 мВ	-0,00017 мВ	0,00017 мВ								
	50 мВ		0,00062 мВ	49,99938 мВ	50,00062 мВ								
	- 50 мВ		0,00062 мВ	-50,00062 мВ	-49,99938 мВ								
	100 мВ		0,00107 мВ	99,99893 мВ	100,00107 мВ								
	- 100 мВ		0,00107 мВ	-100,00107 мВ	-99,99893 мВ								
1 B	0 B		$0.6 \cdot 10^{-6}$	$-0.6 \cdot 10^{-6}$	$0,6\cdot10^{-6}$								
	0,5 B		0,0000038 B	0,4999962	0,5000038								
	-0,5 B	·	0,0000038 B	-0,5000038	-0,4999962								
	1 B	·	0,000007 B	0,999993	1,000007								
	-1 B	·	0,000007 B	-1,000007	-0,999993								

10 B 0 B 0,6·10 ⁻⁶ -0,6·10 ⁻⁶ 0,6·10 ⁻⁶ 1 B 0,0000128 0,9999872 1,0000128 -1 B 0,0000128 -1,0000128 -0,999987 2 B 0,0000196 1,9999804 2,0000196 -2 B 0,0000196 2,0000196 -1,999980 3 B 0,0000264 2,9999736 3,0000264 -3 B 0,0000264 -3,0000264 -2,999973 4 B 0,0000332 3,999968 4,0000332 -4 B 0,0000332 -4,0000332 -3,99996 5 B 0,00004 4,99996 5,00004 -5 B 0,0000468 5,9999532 6,0000468 -6 B 0,0000468 -6,0000468 -5,999953 7 B 0,0000536 -7,0000536 -6,9999464 7,0000536 -7 B 0,0000604 7,9999396 8,0000604 -8 B 0,0000604 -8,0000604 -7,999939 9 B 0,0000672 8,9999328 9,0000672	
1 B 0,0000128 0,9999872 1,0000128 -1 B 0,0000128 -1,0000128 -0,999987 2 B 0,0000196 1,9999804 2,0000196 -2 B 0,0000196 2,0000196 -1,999980 3 B 0,0000264 2,9999736 3,0000264 -3 B 0,0000264 -3,0000264 -2,999973 4 B 0,0000332 3,9999668 4,0000332 -4 B 0,0000332 -4,0000332 -3,99996 5 B 0,00004 4,99996 5,00004 -5 B 0,00004 -5,00004 -4,99996 6 B 0,0000468 5,9999532 6,0000468 -6 B 0,0000468 -6,0000468 -5,999953 7 B 0,0000536 6,9999464 7,0000536 -7 B 0,0000604 7,9999396 8,0000604 -8 B 0,0000604 -8,0000604 -7,999939 9 B 0,0000672 8,9999328 9,0000672	7
-1 B	
2 B 0,0000196 1,9999804 2,0000196 -2 B 0,0000196 2,0000196 -1,999980 3 B 0,0000264 2,9999736 3,0000264 -3 B 0,0000264 -3,0000264 -2,999973 4 B 0,0000332 3,9999668 4,0000332 -4 B 0,0000332 -4,0000332 -3,999966 5 B 0,00004 4,99996 5,00004 -5 B 0,0000468 5,9999532 6,0000468 -6 B 0,0000468 -6,0000468 -5,999953 7 B 0,0000536 6,9999464 7,0000536 -7 B 0,0000536 -7,000536 -6,999946 8 B 0,0000604 7,9999396 8,0000604 -8 B 0,0000604 -8,0000604 -7,999939 9 B 0,0000672 8,9999328 9,0000672	
-2 B 0,0000196 2,0000196 -1,999980 3 B 0,0000264 2,9999736 3,0000264 -3 B 0,0000264 -3,0000264 -2,999973 4 B 0,0000332 3,9999668 4,0000332 -4 B 0,0000332 -4,0000332 -3,999966 5 B 0,00004 4,99996 5,00004 -5 B 0,00004 -5,00004 -4,99996 6 B 0,0000468 5,9999532 6,0000468 -6 B 0,0000468 -6,0000468 -5,999953 7 B 0,0000536 6,9999464 7,0000536 -7 B 0,0000536 -7,0000536 -6,999946 8 B 0,0000604 7,9999396 8,0000604 -8 B 0,0000604 -8,0000604 -7,999939 9 B 0,0000672 8,9999328 9,0000672	
3 B 0,0000264 2,9999736 3,0000264 -3 B 0,0000264 -3,0000264 -2,999973 4 B 0,0000332 3,9999668 4,0000332 -4 B 0,0000332 -4,0000332 -3,999966 5 B 0,00004 4,99996 5,00004 -5 B 0,0000468 5,9999532 6,0000468 -6 B 0,0000468 -6,0000468 -5,999953 7 B 0,0000536 6,9999464 7,0000536 -7 B 0,0000536 -7,0000536 -6,999946 8 B 0,0000604 7,9999396 8,0000604 -8 B 0,0000604 -8,0000604 -7,999939 9 B 0,0000672 8,9999328 9,0000672	
-3 B 0,0000264 -3,0000264 -2,999973 4 B 0,0000332 3,9999668 4,0000332 -4 B 0,0000332 -4,0000332 -3,999966 5 B 0,00004 4,99996 5,00004 -5 B 0,0000468 5,9999532 6,0000468 -6 B 0,0000468 -6,0000468 -5,999953 7 B 0,0000536 6,9999464 7,0000536 -7 B 0,0000536 -7,0000536 -6,999946 8 B 0,0000604 7,9999396 8,0000604 -8 B 0,0000604 -8,0000604 -7,999939 9 B 0,0000672 8,9999328 9,0000672	
4 B 0,0000332 3,9999668 4,0000332 -4 B 0,0000332 -4,0000332 -3,999966 5 B 0,00004 4,99996 5,00004 -5 B 0,00004 -5,00004 -4,99996 6 B 0,0000468 5,9999532 6,0000468 -6 B 0,0000468 -6,0000468 -5,999953 7 B 0,0000536 6,9999464 7,0000536 -7 B 0,0000536 -7,0000536 -6,999946 8 B 0,0000604 7,9999396 8,0000604 -8 B 0,0000604 -8,0000604 -7,999939 9 B 0,0000672 8,9999328 9,0000672	
-4 B 0,0000332 -4,0000332 -3,999966 5 B 0,00004 4,99996 5,00004 -5 B 0,00004 -5,00004 -4,99996 6 B 0,0000468 5,9999532 6,0000468 -6 B 0,0000468 -6,0000468 -5,999953 7 B 0,0000536 6,9999464 7,0000536 -7 B 0,0000536 -7,0000536 -6,999946 8 B 0,0000604 7,9999396 8,0000604 -8 B 0,0000604 -8,0000604 -7,999939 9 B 0,0000672 8,9999328 9,0000672	i
5 B 0,00004 4,99996 5,00004 -5 B 0,00004 -5,00004 -4,99996 6 B 0,0000468 5,9999532 6,0000468 -6 B 0,0000468 -6,0000468 -5,999953 7 B 0,0000536 6,9999464 7,0000536 -7 B 0,0000536 -7,0000536 -6,999946 8 B 0,0000604 7,9999396 8,0000604 -8 B 0,0000604 -8,0000604 -7,999939 9 B 0,0000672 8,9999328 9,0000672	
-5 B 0,00004 -5,00004 -4,99996 6 B 0,0000468 5,9999532 6,0000468 -6 B 0,0000468 -6,0000468 -5,999953 7 B 0,0000536 6,9999464 7,0000536 -7 B 0,0000536 -7,0000536 -6,999946 8 B 0,0000604 7,9999396 8,0000604 -8 B 0,0000604 -8,0000604 -7,999939 9 B 0,0000672 8,9999328 9,0000672	
6 B 0,0000468 5,9999532 6,0000468 -6 B 0,0000468 -6,0000468 -5,999953 7 B 0,0000536 6,9999464 7,0000536 -7 B 0,0000536 -7,0000536 -6,999946 8 B 0,0000604 7,9999396 8,0000604 -8 B 0,0000604 -8,0000604 -7,999939 9 B 0,0000672 8,9999328 9,0000672	
-6 B 0,0000468 -6,0000468 -5,999953 7 B 0,0000536 6,9999464 7,0000536 -7 B 0,0000536 -7,0000536 -6,999946 8 B 0,0000604 7,9999396 8,0000604 -8 B 0,0000604 -8,0000604 -7,999939 9 B 0,0000672 8,9999328 9,0000672	
7 B 0,0000536 6,9999464 7,0000536 -7 B 0,0000536 -7,0000536 -6,999946 8 B 0,0000604 7,9999396 8,0000604 -8 B 0,0000604 -8,0000604 -7,999939 9 B 0,0000672 8,9999328 9,0000672	
-7 B 0,0000536 -7,0000536 -6,999946 8 B 0,0000604 7,9999396 8,0000604 -8 B 0,0000604 -8,0000604 -7,999939 9 B 0,0000672 8,9999328 9,0000672	,
8 B 0,0000604 7,9999396 8,0000604 -8 B 0,0000604 -8,0000604 -7,999939 9 B 0,0000672 8,9999328 9,0000672	
-8 B 0,0000604 -8,0000604 -7,999939 9 B 0,0000672 8,9999328 9,0000672	
9 B 0,0000672 8,9999328 9,0000672	
-9 B 0,0000672 -9,0000672 -8,999932	
10 B 0,000074 9,999926 10,000074	
-10 B 0,000074 -10,000074 -9,999926	
100 B 0,8·10 ⁻⁶ -0,8·10 ⁻⁶ 0,8·10 ⁻⁶	
50 B 0,000555 49,999445 50,000555	
-50 B 0,000555 -50,000555 -49,99944	
100 B 0,00103 99,99897 100,00103	
-100 B 0,00103 -100,00103 -99,99897	
1000 B 500 B 0,00595 499,99405 500,00595	
-500 B 0,00595 -500,00595 -499,9940	
1000 B 0,107 999,893 1000,107	
-1000 B 0,107 -1000,107 -999,893	

Результаты поверки считать положительными, если в диапазоне измерений напряжения постоянного тока от 0 до 1000 В измеренные значения находятся в пределах, указанных в колонках 5, 6 таблиц 3, 4. В противном случае мультиметр бракуется.

7.3.2 Определение абсолютной погрешности измерений напряжения переменного тока

Определение абсолютной погрешности измерений напряжения переменного тока проводить методом прямых измерений с помощью калибратора многофункционального 5720А.

Измерения проводить в следующем порядке:

- 1) подключить к входу поверяемого мультиметра калибратор;
- 2) перевести калибратор в режим воспроизведения напряжения переменного тока;
- 3) установить на выходе калибратора напряжение переменного тока 20 мВ и частотой 1 кГц; 4) запустить процесс измерений;
- 5) снять показания поверяемого мультиметра в точках, указанных в колонках 2,3 таблицы 5 (для мультиметров 8071R, 8109R) или в колонках 2,3 таблицы 6 (для мультиметров 8080R, 8081R, 8104R);
- 6) определить допустимые значения результатов измерений.

Результаты измерений мультиметров 8071R, 8109R записать в колонку 4 таблицы 5.

Результаты измерений мультиметров 8080R, 8081R, 8104R записать в колонку 4 таблицы

6.

Таблица 5 – Режим измерений напряжения переменного тока мультиметров цифровых прецизионных 8071R, 8109R

				8071R, 8109F	R		
Верхнее	Поверя	Часто-	Результат	Пределы	Допускаемо		Заключение
значени	-емая отметк	та	измерений	допускаемой абсолютной	результата и		0
е предела	a			погрешности,	МИН	макс	соответстви и
измерен				±, B			
<u>ий</u>	2	3	4	5	6	7	8
100 мВ	20 мВ	1 кГц		0,062 мВ	19,938 мВ	20,062 мВ	
	100 мВ	1 кГц		0,15 мВ	99,85 мВ	100,15 мВ	
		10 Гц		0,2 мВ	99,8 мВ	100,2 мВ	
		40 Гц		0,2 мВ	99,8 мВ	100,2 мВ	
		56 Гц		0,16 мВ	99,84 мВ	100,16 мВ	
		106 Гц		0,16 мВ	99,84 мВ	100,16 мВ	
		206 Гц		0,15 мВ	99,85 мВ	100,15 мВ	
		2 кГц		0,15 мВ	99,85 мВ	100,15 мВ	
		10 кГц		0,21 мВ	99,79 мВ	100,21 мВ	
		20 кГц		0,21 мВ	99,79 мВ	100,21 мВ	
		50 кГц		0,67 мВ	99,33 мВ	100,67 мВ	
		100 кГц		0,67 мВ	99,33 мВ	100,67 мВ	
1 B	0,2 B	1 кГц		0,46 мВ	0,19954	0,20046	
	1 B	1 кГц		1,1 мВ	0,9989	1,0011	
		10 Гц		3,6 мВ	0,9964	1,0036	
		40 Гц		3,6 мВ	0,9964	1,0036	
		56 Гц		1,6 мВ	0,9984	1,0016	
		106 Гц		1,6 мВ	0,9984	1,0016	
		206 Гц		1,1 мВ	0,9989	1,0011	
		2 кГц		1,1 мВ	0,9989	1,0011	
		10 кГц		2,1 мВ	0,9979	1,0021	
		20 кГц		2,1 мВ	0,9979	1,0021	
		50 кГц		6,7 мВ	0,9933	1,0067	
		100 кГц		6,7 мВ	0,9933	1,0067	
10 B	2 B	1 кГц		4,6 мВ	1,9954	2,0046	
	10 B	1 кГц		11 мВ	9,989	10,011	
		10 Гц		36 мВ	9,964	10,036	
		40 Гц		36 мВ	9,964	10,036	
		56 Гц		16 мВ	9,984	10,016	
		106 Гц		16 мВ	9,984	10,016	
		206 Гц		11 мВ	9,989	10,011	
		2 кГц		11 мВ	9,989	10,011	
		10 кГц		21 мВ	9,979	10,021	
		20 кГц		21 мВ	9,979	10,021	
		50 кГц		67 мВ	9,933	10,067	
		75 кГц		67 мВ	9,933	10,067	
		100 кГц		67 мВ	9,933	10,067	

1	2	3	4	5	6	7	8
100 B	20 B	1 кГц		48 мВ	19,952	20,048	
	100 B	1 кГц		0,12	99,88	100,12	
		10 Гц		0,37	99,63	100,37	
		40 Гц		0,37	99,63	100,37	
		56 Гц		0,18	99,82	100,18	
		106 Гц		0,18	99,82	100,18	
		206 Гц		0,12	99,88	100,12	
		2 кГц		0,12	99,88	100,12	
		10 кГц		0,21	99,79	100,21	
		20 кГц		0,21	99,79	100,21	
1000 B	200 B	1 кГц		0,48	199,52	200,48	
	700 B	1 кГц		0,93	699,07	700,93	
		40 Гц		2,86	697,14	702,86	
		56 Гц		1,44	698,56	701,44	
		106 Гц		1,44	698,56	701,44	
		206 Гц		0,93	699,07	700,93	
		2 кГц		0,93	699,07	700,93	
		10 кГц		1,62	698,38	701,62	
		20 кГц		1,62	698,38	701,62	

Таблица 6 – Режим измерений напряжения переменного тока мультиметров цифровых прецизионных 8080R, 8081R, 8104R

•	8080R, 8081R, 8104R											
Верхнее значени	Поверя е-мая	Часто- та	Результат измерений	Пределы допускаемой	, , ,	Допускаемые значения результата измерений, В						
е предела измерен ий	отметк а		-	абсолютной погрешности, ±, В	мин	макс	соответ- ствии					
1 100 P	2 20 P	3	4	5	6	7	8					
100 мВ	20 мВ	1 кГц		0,014 мВ	19,986 мВ	20,014 мВ						
	100 мВ	1 кГц		0,038 мВ	99,962 мВ	100,038 мВ						
		10 Гц		0,095 мВ	99,905 мВ	100,095 мВ						
		40 Гц		0,095 мВ	99,905 мВ	100,095 мВ						
		56 Гц		0,039 мВ	99,961 мВ	100,039 мВ						
		106 Гц		0,039 мВ	99,961 мВ	100,039 мВ						
		206 Гц		0,038 мВ	99,962 мВ	100,038 мВ						
		2 кГц		0,038 мВ	99,962 мВ	100,038 мВ						
		10 кГц		0,05 мВ	99,95 мВ	100,05 мВ						
		20 кГц		0,05 мВ	99,95 мВ	100,05 мВ						
		50 кГц		0,14 мВ	99,86 мВ	100,14 мВ						

1	2	ъблицы 6 3	4	5	6	7	8
		100 кГц		0,14 мВ	99,86 мВ	100,14 мВ	
1 B	0,2 B	1 кГц		0,1 мВ	0,1999	0,2001	
	1 B	1 кГц		0,26 мВ	0,99974	1,00026	
		10 Гц		0,75 мВ	0,99925	1,00075	
		40 Гц		0,75 мВ	0,99925	1,00075	
		56 Гц		0,36 мВ	0,99964	1,00036	
		106 Гц		0,36 мВ	0,99964	1,00036	
		206 Гц		0,26 мВ	0,99974	1,00026	
		2 кГц		0,26 мВ	0,99974	1,00026	
		10 кГц		0,5 мВ	0,9995	1,0005	
		20 кГц		0,5 мВ	0,9995	1,0005	
		50 кГц		1,4 мВ	0,9986	1,0014	
		100 кГц		1,4 мВ	0,9986	1,0014	
		400 кГц		40,6 мВ	0,9594	1,0406	
		1 МГц		40,6 мВ	0,9594	1,0406	
10 B	2 B	1 кГц		1 мВ	1,999	2,001	
	10 B	1 кГц		2,6 мВ	9,9974	10,0026	
		10 Гц		7,5 мВ	9,9925	10,0075	
		40 Гц		7,5 мВ	9,9925	10,0075	
		56 Гц		3,6 мВ	9,9964	10,0036	
		106 Гц		3,6 мВ	9,9964	10,0036	
		206 Гц		2,6 мВ	9,9974	10,0026	
		2 кГц		2,6 мВ	9,9974	10,0026	
		10 кГц		5 мВ	9,995	10,005	
		20 кГц		5 мВ	9,995	10,005	
		50 кГц		14 мВ	9,986	10,014	
		100 кГц		14 мВ	9,986	10,014	
		150 кГц		406 мВ	9,594	10,406	
		200 кГц		406 мВ	9,594	10,406	
100 B	20 B	1 кГц		13 мВ	19,987	20,013	
	100 B	1 кГц		37 мВ	99,963	100,037	
		10 Гц		95 мВ	99,905	100,095	
		40 Гц		95 мВ	99,905	100,095	
		56 Гц		39 мВ	99,961	100,039	
		106 Гц		39 мВ	99,961	100,039	
		206 Гц		37 мВ	99,963	100,037	
		2 кГц		37 мВ	99,963	100,037	
		10 кГц		60 мВ	99,94	100,06	
		20 кГц		60 мВ	99,94	100,06	
		30 кГц		170 мВ	99,83	100,17	
		50 кГц		170 мВ	99,83	100,17	

Окончание таблицы 6

1	2	3	4	5	6	7	8
1000 B	200 B	1 кГц		0,13	199,87	200,13	
	700 B	1 кГц		0,28	699,72	700,28	
		40 Гц		0,71	699,29	700,71	
		56 Гц		0,3	699,70	700,30	
		106 Гц		0,3	699,70	700,30	
		206 Гц		0,28	699,72	700,28	
		2 кГц		0,28	699,72	700,28	
		5 кГц		0,45	699,55	700,45	
		10 кГц		0,45	699,55	700,45	

Результаты поверки мультиметров 8071R, 8109R считать положительными, если в диапазоне измерений напряжения переменного тока от 0 до 1000 В в диапазоне частот от 10 Гц до 100 кГц измеренные значения находятся в пределах, указанных в колонках 6, 7 таблицы 5. В противном случае мультиметр бракуется.

Результаты поверки мультиметров 8080R, 8081R, 8104R считать положительными, если в диапазоне измерений напряжения переменного тока от 0 до 1000 В в диапазоне частот от 10 Гц до 1 МГц измеренные значения находятся в пределах, указанных в колонках 6, 7 таблицы 6. В противном случае мультиметр бракуется.

7.3.3 Определение абсолютной погрешности измерений силы постоянного тока

Определение абсолютной погрешности измерений силы постоянного тока проиводить методом прямых измерений с помощью калибратора многофункционального 3041R.

Измерения проводить в следующем порядке:

- 1) выставить нуль мультиметра. Выбрать режим измерения силы постоянного тока, нажав кнопку DCI. Входы мультиметра I+; I- должны быть открытыми, без подключенных проводов. Выбрать режим «авто» диапазона, нажав кнопку Range Auto (убедитесь что функция «авто» диапазона установлена, надпись Range Auto появилась на дисплее), затем запустить установку нуля, нажав кнопку NULL;
- 2) подключить к входу поверяемого мультиметра калибратор многофункциональный 3041R;
- 3) перевести калибратор в режим воспроизведения силы постоянного тока;
- 4) установить на выходе калибратора силу постоянного тока 100 мкА для мультиметров 8071R, 8109R, 8080R или 10 нА (диапазоны от 10 нА до 10 мкА, выход электрометра) для мультиметров 8081R, 8104R;
- 5) запустить процесс измерений;
- 6) снять показания поверяемого мультиметра в точках, указанных в колонке 2 таблицы 7 (для мультиметров 8071R, 8109R) или в колонке 2 таблицы 8 (для мультиметров 8080R) или в колонке 2 таблицы 9 (для мультиметров 8081R, 8104R);
- 7) определить допустимые значения результатов измерений. Результаты измерений мультиметров 8071R, 8109R записать в графу 3 таблицы 7. Результаты измерений мультиметров 8080R записать в графу 3 таблицы 8. Результаты измерений мультиметров 8081R, 8104R записать в графу 3 таблицы 9.

Таблица 7 — Режим измерений силы постоянного тока мультиметров цифровых прецизионных 8071R, 8109R

			8071R, 81	09R		
Верхнее	Поверяе-	Результаты	Пределы	Допускаемы		Заключение о
значение	мая	измерений	допускаемой	результата и	змерений, А	соответствии
предела	отметка		абсолютной	МИН	макс	
измерений			погрешности, ±,			
			A		,	
100 4	2	3	4	5	6	7
100 мкА	0 мкА		14·10 ⁻⁴ мкА	-14·10 ⁻⁴ мкА	14-10-4 мкА	
	100 мкА		54·10 ⁻⁴ мкА	99,99946 мкА	100,00054 мкА	
	-100 мкА		54·10 ⁻⁴ мкА	-100,00054 мкА	-99,99946 мкА	
1 мА	0 мА		14·10 ⁻⁶ мА	-14·10 ⁻⁶ мА	14·10 ⁻⁶ мА	
	1 мА		54·10 ⁻⁶ мА	0,999946 мА	1,000054 мА	
	-1 мА		54·10 ⁻⁶ мА	-1,000054 мА	-0,999946 мА	
10 мА	0 мА		140·10 ⁻⁶ мА	-140·10 ⁻⁶ мА	140·10 ⁻⁶ мА	
	10 мА		690·10 ⁻⁶ мА	9,99931 мА	10,00069 мА	
	-10 мА		690·10 ⁻⁶ мА	-10,00069 мА	-9,99931 мА	
100 мА	0 мА		0,0022 мА	-0,0022 мА	0,0022 мА	
	100 мА		0,0193 мА	99,9807 мА	100,0193 мА	
	-100 мА		0,0193 мА	-100,0193 мА	-99,9807 мА	
1 A	0 A		45·10 ⁻⁶	-45·10 ⁻⁶	45·10 ⁻⁶	
	1 A		901·10 ⁻⁶	0,999099	1,000901	
	-1 A		901·10 ⁻⁶	-1,000901	-0,999099	
10 A	0 A		1,2.10-3	-1,2·10 ⁻³	1,2·10 ⁻³	
	10 A		0,02453	9,97547	10,02453	
	-10 A		0,02453	-10,02453	-9,97547	
30 A	0 A		0,015	-0,015	0,015	
	30 A		0,10833	29,89167	30,10833	
	-30 A		0,10833	-30,10833	-29,89167	

Таблица 8 - Режим измерений силы постоянного тока мультиметров цифровых прецизионных 8080R

			8080R			
Верхнее значение	Поверяе- мая	Результаты измерений	Пределы допускаемой	Допускаемь результата и		Заключение о соответствии
предела измерений	отметка		абсолютной погрешности, \pm , A	мин	макс	
1	2	3	4	5	6	7
100 мкА	0 мкА		4·10 ⁻⁴ мкА	-4·10 ⁻⁴ мкА	4·10 ⁻⁴ мкА	
	100 мкА		1,8·10 ⁻³ мкА	99,99817 мкА	100,00183 мкА	
	-100 мкА		1,8·10 ⁻³ мкА	-100,00183 мкА	-99,99817 мкА	
1 мА	0 мА		4·10 ⁻⁶ мА	-4·10 ⁻⁶ мА	4·10 ⁻⁶ мА	
	1 мА		18·10 ⁻⁶ мА	0,999982 мА	1,000018 мА	
	-1 мА		18·10 ⁻⁶ мА	-1,000018 мА	-0,999982 мА	
10 мА	0 мА		40·10 ⁻⁶ мА	-40·10 ⁻⁶ мА	40·10 ⁻⁶ мА	
	10 мА		200·10 ⁻⁶ мА	9,9998 мА	10,0002 мА	
	-10 мА		200·10 ⁻⁶ мА	-10,0002 мА	-9,9998 мА	
100 мА	0 мА		6·10 ⁻⁴ мА	-6·10 ⁻⁴ мА	6·10 ⁻⁴ мА	
	100 мА		5,3·10 ⁻³ мА	99,9947 мА	100,0053 мА	
	-100 мА		5,3·10 ⁻³ мА	-100,0053 мА	-99,9947 мА	
1 A	0 A		13·10 ⁻⁶	-13·10 ⁻⁶	13·10 ⁻⁶	
	1 A		247·10 ⁻⁶	0,999754	1,000246	
	-1 A		247·10 ⁻⁶	-1,000246	-0,999754	

1	2	3	4	5	6	7
10 A	0 A		3,5·10 ⁻⁴	-3,5·10 ⁻⁴	3,5·10 ⁻⁴	
	10 A		5,96·10 ⁻³	9,99404	10,00596	
	-10 A		5,96·10 ⁻³	-10,00596	-9,99404	
30 A	0 A		$4,35\cdot10^{-3}$	-4,35·10 ⁻³	4,35·10 ⁻³	
	30 A		0,02727	29,97273	30,02727	
	-30 A		0,02727	-30,02727	-29,97273	

Таблица 9— Режим измерений силы постоянного тока мультиметров цифровых прецизионных 8081R, 8104R

			8081R, 81	04R		
Верхнее значение	Поверяе- мая	Результаты измерений	Пределы допускаемой		ые значения змерений, А	Заключение о соответствии
предела	отметка	1	абсолютной	МИН	макс	
измерений			погрешности, ±,			
			A			
1	2	3	4	5	6	7
10 нА	10 нА		0,15228 нА	9,84772 нА	10,15228 нА	
	-10 нА		0,15228 нА	-10,15228 нА	-9,84772 нА	
100 нА	100 нА		0,3121 нА	99,6879 нА	100,3121 нА	
	-100 нА		0,3121 нА	-100,3121 нА	-99,6879 нА	
1 мкА	1 мкА		356·10 ⁻⁶ мкА	0,999644 мкА	1,000356 мкА	
	-1 мкА		356·10 ⁻⁶ мкА	-1,000356 мкА	-0,999644 мкА	
10 мкА	10 мкА		600·10 ⁻⁶ мкА	9,9994 мкА	10,0006 мкА	
	-10 мкА		600·10 ⁻⁶ мкА	-10,0006 мкА	-9,9994 мкА	
100 мкА	0 мкА		4·10 ⁻⁴ мкА	-4·10 ⁻⁴ мкА	4·10 ⁻⁴ мкА	
	100 мкА		1,8·10 ⁻³ мкА	99,99817 мкА	100,00183 мкА	
	-100 мкА		1,8·10 ⁻³ мкА	-100,00183 мкА	-99,99817 мкА	
1 мА	0 мА		4·10 ⁻⁶ мА	-4·10 ⁻⁶ мА	4·10 ⁻⁶ мА	
	1 мА		18·10 ⁻⁶ мА	0,999982 мА	1,000018 мА	
	-1 мА		18·10 ⁻⁶ мА	-1,000018 мА	-0,999982 мА	
10 мА	0 мА		40·10 ⁻⁶ мА	-40·10 ⁻⁶ мА	40·10 ⁻⁶ мА	
	10 мА		200·10 ⁻⁶ мА	9,9998 мА	10,0002 мА	
	-10 мА		200·10 ⁻⁶ мА	-10,0002 мА	-9,9998 мА	
100 мА	0 мА		6·10 ⁻⁴ мА	-6·10 ⁻⁴ мА	6·10 ⁻⁴ мА	
	100 мА		5,3·10 ⁻³ MA	99,9947 мА	100,0053 мА	
	-100 мА		5,3·10 ⁻³ MA	-100,0053 мА	-99,9947 мА	
1 A	0 A		13·10 ⁻⁶	-13·10 ⁻⁶	13.10-6	
	1 A		247·10 ⁻⁶	0,999754	1,000246	
	-1 A		247·10 ⁻⁶	-1,000246	-0,999754	
10 A	0 A		3,5·10 ⁻⁴	-3,5·10 ⁻⁴	3,5·10 ⁻⁴	
10 11	10 A		5,96·10 ⁻³	9,99404	10,00596	
	-10 A		5,96·10	-10,00596	-9,99404	
30 A	0 A		4,35·10 ⁻³	-4,35·10 ⁻³	4,35·10 ⁻³	
JU 11	30 A		0,02727	29,97273	30,02727	
	-30 A		0,02727	-30,02727	-29,97273	

Результаты поверки мультиметров 8071R, 8109R считать положительными, если в диапазоне измерений силы постоянного тока от 100 мкА до 30 А измеренные значения находятся в пределах, указанных в колонках 5, 6 таблицы 7. В противном случае мультиметр бракуется.

Результаты поверки мультиметров 8080R считать положительными, если в диапазоне измерений силы постоянного тока от 100 мкА до 30 А измеренные значения находятся в пределах, указанных в колонках 5, 6 таблицы 8. В противном случае мультиметр бракуется.

Результаты поверки мультиметров 8081R, 8104R считать положительными, если в диапазоне измерений силы постоянного тока от 10 нА до 30 А измеренные значения находятся в пределах, указанных в колонках 5, 6 таблицы 9. В противном случае мультиметр бракуется.

7.3.4 Определение абсолютной погрешности измерений силы переменного тока

Определение абсолютной погрешности измерений силы переменного тока проводить методом прямых измерений с помощью калибратора многофункционального 3041R.

Измерения проводить в следующем порядке:

- 1) подключить к входу поверяемого мультиметра калибратор многофункциональный 3041R;
- 2) перевести калибратор в режим воспроизведения силы переменного тока;
- 3) установить на выходе калибратора силу переменного тока 20 мкА при частоте 1 кГц;
- 4) запустить процесс измерений;
- 5) снять показания поверяемого мультиметра в точках, указанных в колонках 2,3 таблицы 10 (для мультиметров 8071R, 8109R) или в колонках 2,3 таблицы 11 (для мультиметров 8080R, 8081R, 8104R);
- 6) определить допустимые значения результатов измерений. Результаты измерений мультиметров 8071R, 8109R записать в графу 4 таблицы 10. Результаты измерений мультиметров 8080R, 8081R, 8104R записать в графу 4 таблицы 11.

Таблица 10 – Режим измерений силы переменного тока мультиметров цифровых прецизионных 8071R, 8109R

				8071R, 81091			
Верхнее значени	Поверя -емая	Часто- та	Результат измерений	Пределы допускаемой	Допускаемо результата и		Заключение о соответствии
e	отметк			абсолютной	МИН	макс]
предела	a			погрешности,			
измерен				±, A			
ий 1	2	3	4	5	6	7	8
100 мкА	20 мкА	1 кГц		0,054 мкА	19,946 мкА	20,054 мкА	
 	100 мкА	1 кГц		0,15 мкА	99,85 мкА	100,15 мкА	
		10 Гц		0,24 мкА	99,76 мкА	100,24 мкА	
		40 Гц		0,24 мкА	99,76 мкА	100,24 мкА	
		56 Гц		0,15 мкА	99,85 мкА	100,15 мкА	
		106 Гц		0,15 мкА	99,85 мкА	100,15 мкА	
		206 Гц		0,15 мкА	99,85 мкА	100,15 мкА	
		2 кГц		0,56 мкА	99,44 мкА	100,56 мкА	
		10 кГц		0,56 мкА	99,44++ мкА	100,56 мкА	
1 мА	0,2 мА	1 кГц		5,4·10 ⁻⁴ мА	0,19946 мА	0,20054 мА	
 	1 мА	1 кГц		15·10 ⁻⁴ мА	0,9985 мА	1,0015 мА	
		10 Гц		24·10 ⁻⁴ мА	0,9976 мА	1,0024 мА	
		40 Гц		24·10 ⁻⁴ мА	0,9976 мА	1,0024 мА	
		56 Гц		15·10 ⁻⁴ мА	0,9985 мА	1,0015 мА	
		106 Гц		15·10 ⁻⁴ мА	0,9985 мА	1,0015 мА	
		206 Гц		15·10 ⁻⁴ мА	0,9985 мА	1,0015 мА	
		2 кГц		56·10 ⁻⁴ мА	0,9944 мА	1,0056 мА	
		10 кГц		56·10 ⁻⁴ мА	0,9944 мА	1,0056 мА	
10 мА	2 мА	1 кГц		54·10 ⁻⁴ мА	1,9946 мА	2,0054 мА	
	10 мА	1 кГц		0,015 мА	9,985 мА	10,015 мА	
		10 Гц		0,024 мА	9,976 мА	10,024 мА	

40 Гц	0,024 N	ıA 9,976 мA	10,024 мА	
56 Гц	0,015 N	1А 9,985 мА	10,015 мА	
106 Гц	0,015 N	ıA 9,985 мA	10,015 мА	

Прололжение таблины 10

Продол:	жение та	<u>блицы 10</u>	4	1 -		7	6
1	2	3 206 Гц	4	5 0,015 MA	6 9,985 мА	7 10,015 мА	8
		2 кГц		0,015 мА	9,944 мА	10,015 мА	
		10 кГц		0,056 мА	9,944 мА	10,056 мА	
100 мА	20 мА	1 кГц		0,054 мА	19,946 мА	20,054 мА	
100 1111	100 мА	1 кГц		0,15 мА	99,85 мА	100,15 MA	
	100 1111	10 Гц		0,24 мА	99,76 мА	100,24 мА	
		40 Гц		0,24 мА	99,76 мА	100,24 мА	
		56 Гц		0,15 мА	99,85 мА	100,15 мА	
		106 Гц		0,15 мА	99,85 мА	100,15 мА	
		206 Гц		0,15 мА	99,85 мА	100,15 мА	
		2 кГц		0,56 мА	99,44 мА	100,56 мА	
		10 кГц		0,56 мА	99,44 мА	100,56 мА	
1 A	0,2 A	1 кГц		0,00082	0,199918	0,200082	
	1 A	1 кГц		0,0021	0,9979	1,0021	
		10 Гц		0,0037	0,9963	1,0037	
		40 Гц		0,0037	0,9963	1,0037	
		56 Гц		0,0021	0,9979	1,0021	
		106 Гц		0,0021	0,9979	1,0021	
		206 Гц		0,0021	0,9979	1,0021	
		2 кГц		0,0062	0,9938	1,0062	
		10 кГц		0,0062	0,9938	1,0062	
10 A	2 A	1 кГц		0,0224	1,9776	2,0224	
	10 A	1 кГц		0,072	9,928	10,072	
		10 Гц		0,057	9,943	10,057	
		40 Гц		0,057	9,943	10,057	
		56 Гц		0,072	9,928	10,072	
		106 Гц		0,072	9,928	10,072	
		206 Гц		0,072	9,928	10,072	
30 A	2 A	1 кГц		0,0424	1,9576	2,0424	
	30 A	1 кГц		0,216	29,784	30,216	
		10 Гц		0,171	29,829	30,171	
		40 Гц		0,171	29,829	30,171	
		56 Гц		0,216	29,784	30,216	
		106 Гц		0,216	29,784	30,216	
		206 Гц		0,216	29,784	30,216	

Таблица 11 – Режим измерений силы переменного тока мультиметров цифровых прецизионных 8080R, 8081R, 8104R

			80)80R, 8081R, 8	104R		
Верхнее	Поверя	Часто-	Результат	Пределы		ое значение	Заключение о
значени е	-емая отметк	та	измерений	допускаемой абсолютной	результата и мин	змерений, А макс	соответствии
предела измерен ий	a			погрешности, ±, А			
<u>ии</u> 1	2	3	4	5	6	7	8
100 мкА	20 мкА	1 кГц		0,022 мкА	19,978 мкА	20,022 мкА	
	100 мкА	1 кГц		0,062 мкА	99,938 мкА	100,062 мкА	
		10 Гц		0,105 мкА	99,9895 мкА	100,105 мкА	
		40 Гц		0,105 мкА	99,9895 мкА	100,105 мкА	
		56 Гц		0,062 мкА	99,938 мкА	100,062 мкА	
		106 Гц		0,062 мкА	99,938 мкА	100,062 мкА	
		206 Гц		0,062 мкА	99,938 мкА	100,062 мкА	
		2 кГц		0,15 мкА	99,85 мкА	100,15 мкА	
		10 кГц		0,15 мкА	99,85 мкА	100,15 мкА	
1 мА	0,2 мА	1 кГц		2,2·10 ⁻⁴ мA	0,19978 мА	0,20022 мА	
	1 мА	1 кГц		6,2·10 ⁻⁴ мА	0,99938 мА	1,00062 мА	
		10 Гц		0,00105 мА	0,99895 мА	1,00105 мА	
		40 Гц		0,00105 мА	0,99895 мА	1,00105 мА	
		56 Гц		6,2·10 ⁻⁴ мА	0,99938 мА	1,00062 мА	
		106 Гц		6,2·10 ⁻⁴ мА	0,99938 мА	1,00062 мА	
		206 Гц		6,2·10 ⁻⁴ мА	0,99938 мА	1,00062 мА	
		2 кГц		1,5·10 ⁻³ мА	0,9985 мА	1,0015 мА	
		10 кГц		1,5·10 ⁻³ мА	0,9985 мА	1,0015 мА	
10 мА	2 мА	1 кГц		0,0022 мА	1,9978 мА	2,0022 мА	
	10 мА	1 кГц		0,0062 мА	9,9938 мА	10,0062 мА	
		10 Гц		0,0105 мА	9,9895 мА	10,0105 мА	
		40 Гц		0,0105 мА	9,9895 мА	10,0105 мА	
		56 Гц		0,0062 мА	9,9938 мА	10,0062 мА	
		106 Гц		0,0062 мА	9,9938 мА	10,0062 мА	
		206 Гц		0,0062 мА	9,9938 мА	10,0062 мА	
		2 кГц		0,015 мА	9,985 мА	10,015 мА	
		10 кГц		0,015 мА	9,985 мА	10,015 мА	
100 мА	20 мА	1 кГц		0,022 мА	19,978 мА	20,022 мА	
	100 мА	1 кГц		0,062 мА	99,938 мА	100,062 мА	
		10 Гц		0,105 мА	99,895 мА	100,105 мА	
		40 Гц		0,105 мА	99,895 мА	100,105 мА	
		56 Гц		0,062 мА	99,938 мА	100,062 мА	
		106 Гц		0,062 мА	99,938 мА	100,062 мА	
		206 Гц		0,062 мА	99,938 мА	100,062 мА	
		2 кГц		0,15 мА	99,85 мА	100,15 мА	
		10 кГц		0,15 мА	99,85 мА	100,15 мА	

1	2	3	4	5	6	7	8
1 A	0,2 A	1 кГц		2,9·10 ⁻⁴	0,19971	0,20029	-
	1 A	1 кГц		8,5·10 ⁻⁴	0,99915	1,00085	
		10 Гц		1,3·10 ⁻³	0,9987	1,0013	
		40 Гц		1,3·10 ⁻³	0,9987	1,0013	
		56 Гц		8,5·10 ⁻⁴	0,99915	1,00085	
		106 Гц		8,5·10 ⁻⁴	0,99915	1,00085	
		206 Гц		8,5·10 ⁻⁴	0,99915	1,00085	
		2 кГц		1,8·10 ⁻³	0,9982	1,0018	
		10 кГц		1,8·10 ⁻³	0,9982	1,0018	
10 A	2 A	1 кГц		5,4·10 ⁻³	1,9946	2,0054	
	10 A	1 кГц		0,015	9,985	10,015	
		10 Гц		0,02	9,98	10,02	
		40 Гц		0,02	9,98	10,02	
		56 Гц		0,015	9,985	10,015	
		106 Гц		0,015	9,985	10,015	
		206 Гц		0,015	9,985	10,015	
30 A	2 A	1 кГц		0,0114	1,9886	2,0114	
	30 A	1 кГц		0,045	29,955	30,045	
		10 Гц		0,06	29,94	30,06	
		40 Гц		0,06	29,94	30,06	
		56 Гц		0,045	29,955	30,045	
		106 Гц		0,045	29,955	30,045	
		206 Гц		0,045	29,955	30,045	

Результаты поверки мультиметров 8071R, 8109R считать положительными, если в диапазоне измерений силы переменного тока от 0 до 30 A в диапазоне частот от $10~\Gamma$ ц до $10~\kappa$ Сц измеренные значения находятся в пределах, указанных в колонках 6, 7 таблицы 10. В противном случае мультиметр бракуется.

Результаты поверки мультиметров 8080R, 8081R, 8104R считать положительными, если в диапазоне измерений силы переменного тока от 0 до 30 A в диапазоне частот от 10 Гц до 10 кГц измеренные значения находятся в пределах, указанных в колонках 6, 7 таблицы 11. В противном случае мультиметр бракуется.

7.3.5 Определение абсолютной погрешности измерений электрического сопротивления постоянному току

7.3.5.1 Определение абсолютной погрешности измерений электрического сопротивления постоянному току мультиметров цифровых прецизионных 8071R, 8109R проводить методом прямых измерений с помощью калибратора многофункционального 5720A. В диапазоне измерений от 1 Ом до 100 кОм измерения провести по 4-х проводной схеме подключения. В диапазоне измерений от 100 кОм до 10 МОм измерения провести по 2-х проводной схеме подключения.

Измерения проводить в следующем порядке:

1) установить нуль мультиметра. Подключить провода к входу мультиметра V+; V- и закоротить для 2-х проводной схемы поключения. Подключить провода к входу мультиметра V+; V-; I+; I- и закоротить для 4-х проводной схемы подключения. Выбрать режим «авто» диапазона, нажав кнопку Range Auto (убедитесь что функция «авто» диапазона установлена, надпись Range Auto появилась на дисплее), затем запустить

установку нуля, нажав кнопку NULL. Установка нуля производится для 2-х проводной схемы и 4-х проводной схемы отдельно перед началом измерений;

- 2) подключить к входу поверяемого мультиметра калибратор;
- 3) перевести калибратор в режим воспроизведения сопротивления постоянному току;
- 4) установить на выходе калибратора сопротивление величиной 10 Ом;
- 5) запустить процесс измерений;
- 6) снять показания поверяемого мультиметра;
- 7) рассчитать абсолютную погрешность измерений по формуле (1):

$$\Delta = R_{\text{M3M}} - R_{\text{K}},\tag{1}$$

где $R_{\text{изм}}$, - результат измерений, Ом;

 R_{κ} – показание калибратора, Ом;

8) определить допустимые значения результатов измерений. Результаты измерений и вычислений записать в таблицу 12.

Таблица 12 – Режим измерений сопротивления постоянному току мультиметров цифровых прецизионных **8071R**, **8109R**

Поверяемые	Показание	Ток	Результат	Абсолютная	Пределы	Заключение о
точки	калибратора,	измерения	измерений	погрешность	допускаемой	соответствии
	Ом			измерений,	абсолютной	
				Ом	погрешности,	
					± Ом	
1	2	3	4	5	6	7
10 Ом		10 мА			547·10 ⁻⁶	
100 Ом		10 мА			$4,19\cdot10^{-3}$	
1 кОм		10 мА			33,1.10-3	
10 кОм		1 мА			0,409	
100 кОм		100 мкА			4,77	
1 МОм		10 мкА			59,8	
10 МОм		1 мкА			948	

Результаты поверки мультиметров 8071R, 8109R считать положительными, если в диапазоне измерений сопротивления постоянному току от 10 Ом до 10 МОм значения абсолютной погрешности находятся в пределах, указанных в колонке 6 таблицы 12. В противном случае мультиметр бракуется.

7.3.5.2 Определение абсолютной погрешности измерений электрического сопротивления постоянному току мультиметров цифровых прецизионных 8080R, 8081R, 8104R проводить методом прямых измерений с помощью калибратора многофункционального 5720A. В диапазоне измерений от 1 Ом до 100 кОм измерения провести по 4-х проводной схеме подключения. В диапазоне измерений от 100 кОм до 10 МОм измерения провести по 2-х проводной схеме подключения.

Измерения проводить в следующем порядке:

- 1) установить нуль мультиметра. Подключить провода к входу мультиметра V+; V- и закоротить для 2-х проводной схеме, подключить провода к входу мультиметра V+; V-; I+; I- и закоротить для 4-х проводной схемы подключения. Выбрать режим «авто» диапазона, нажав кнопку Range Auto (убедитесь что функция «авто» диапазона установлена, надпись Range Auto появилась на дисплее), затем запустить установку нуля, нажав кнопку NULL. Процесс установления нуля займет 45-50 с.
 - Установка нуля производиться для 2-х проводной схемы и 4-х проводной схемы отдельно перед началом измерений;
- 2) подключить к входу поверяемого мультиметра калибратор;
- 3) перевести калибратор в режим воспроизведения сопротивления постоянному току;
- 4) установить на выходе калибратора сопротивление величиной 1 Ом;
- 5) запустить процесс измерений;

- 6) снять показания поверяемого мультиметра;
- 7) провести измерения по п.п. 1 5 для остальных отметок из таблицы 13;
- 8) рассчитать абсолютную погрешность измерений по формуле (1). Результаты измерений и вычислений записать в таблицу 13.

Таблица 13 — Режим измерений сопротивления постоянному току мультиметров цифровых прецизионных **8080R**, **8081R**, **8104R**

Поверяемые	Показание	Ток	Результат	Абсолютная	Пределы	Заключение о
точки	калибратора,	измерения	измерений	погрешность	допускаемой	соответствии
	Ом			измерений,	абсолютной	
				Ом	погрешности,	
					±, Ом	
1	2	3	4	5	6	7
1 Ом		100 мА			$29,5 \cdot 10^{-6}$	
10 Ом		10 мА			188·10 ⁻⁶	
100 Ом		10 мА			1,51·10 ⁻³	
1 кОм		10 мА			13,3·10 ⁻³	
10 кОм		1 мА			157·10 ⁻³	
100 кОм		100 мкА			2,37	
1 МОм		10 мкА			20,2	
10 МОм		1 мкА			319	

Результаты поверки мультиметров 8080R, 8081R, 8104R считать положительными, если в диапазоне измерений сопротивления постоянному току от 1 Ом до 10 МОм значения абсолютной погрешности находятся в пределах, указанных в колонке 6 таблицы 13. В противном случае мультиметр бракуется.

7.3.5.3 Определение абсолютной погрешности измерений электрического сопротивления постоянному току мультиметров цифровых прецизионных 8081R, 8104R (режим электрометр) проводить методом прямых измерений с помощью калибратора постоянного тока НК4-1.

Измерения проводить в следующем порядке:

- 1) подключить к входу поверяемого мультиметра калибратор постоянного тока НК4-1;
- 2) перевести калибратор в режим воспроизведения сопротивления постоянному току;
- 3) установить на выходе калибратора сопротивление величиной 5 МОм;
- 4) запустить процесс измерений;
- 5) снять показания поверяемого прибора;
- 6) провести измерения по п.п. 1 5 для остальных отметок из таблицы 14;
- 7) рассчитать абсолютную погрешность измерений по формуле (1). Результаты измерений и вычислений записать в таблицу 14.

Таблица 14 - Режим измерений сопротивления постоянному току мультиметров цифровых

прецизионных 8081R, 8104R (вход электрометр)

		точк (вход эл	ектрометр)		1	
Установ-	Поверяемые	Показание	Результат	Абсолютная	Пределы	Заключение о
ленное	точки	калибратора	измерений	погрешность	допускаемой	соответствии
напряжение				измерений	абсолютной	
					погрешности, ±	
					1 /	
1	2	3	4	5	6	7
50 B	5 МОм				700 Ом	
	100 МОм				45 кОм	
	1 ГОм				1,8 МОм	
	10 ГОм				230 МОм	
	100 ГОм				2,3 ГОм	
	1 ТОм				23 ГОм	

1	2	3	4	5	6	7
100 B	10 МОм				1,4 кОм	
	100 МОм				41,6 кОм	
	1 ГОм				1,81 МОм	
	10 ГОм				230 МОм	
	100 ГОм				2,3 ГОм	
	1 ТОм				23 ГОм	
	2 ТОм				46 ГОм	
150 B	100 МОм				13,5 кОм	
	1 ГОм				460 кОм	
	10 ГОм				1,9 МОм	
	100 ГОм				1,7667 ГОм	
	1 ТОм				17,667 ГОм	
	2 ТОм				35,334 ГОм	
200 B	100 МОм				13,5 кОм	
	1 ГОм				430 кОм	
	10 ГОм				18,1 МОм	
	100 ГОм				1,5 ГОм	
	1 ТОм				15 ГОм	
	2 ТОм				30 ГОм	
250 B	100 МОм				13,2 кОм	
	1 ГОм				430 кОм	
	10 ГОм				18,1 МОм	
	100 ГОм				1,34 ГОм	
	1 ТОм				13,4 ГОм	
	2 ТОм				26,8 ГОм	
300 B	100 МОм				13,2 кОм	
	1 ГОм				415 кОм	
	10 ГОм				18,1 МОм	
	100 ГОм				1,23 ГОм	
	1 ТОм				12,3 ГОм	
	2 ТОм				24,6 ГОм	

Результаты поверки мультиметров 8081R, 8104R (режим электрометр) считать положительными, если в диапазоне измерений сопротивления постоянному току от 5 МОм до 2 ТОм значения абсолютной погрешности находятся в допускаемых пределах, указанных в колонке 6 таблицы 14. В противном случае мультиметр бракуется.

7.3.6 Определение абсолютной погрешности измерений частоты

Определение абсолютной погрешности измерений частоты проводить методом прямых измерений с помошью калибратора многофункционального 3041R со встроенной опцией FRQ.

Измерения проводить в точках 1 Гц, 100 Гц, 1 кГц, 100 кГц, 1 МГц.

Измерения проводить в следующем порядке:

- 1) подключить ко входу поверяемого мультиметра калибратор;
- 2) установить на выходе калибратора частоту 1 Гц;
- 3) запустить процесс измерений;
- 4) снять показания поверяемого мультиметра;
- 5) провести измерения по п.п. 1 4 для остальных значений частоты;
- 6) рассчитать значения абсолютной погрешности измерений частоты по формуле (2):

$$\Delta = F_{\text{M3M}} - F_0, \tag{2}$$

где $F_{\text{изм}}$ – результат измерений, Γ ц (к Γ ц, М Γ ц);

 F_0 – показание калибратора, Γ ц (к Γ ц, М Γ ц).

Записать результаты измерений и расчетов в таблицу 15.

Таблица 15 – Режим измерений частоты

_		8071R, 8109R		
Поверяемые точки	Результат измерений	Абсолютная погрешность измерений	Пределы допускаемой погрешности, \pm , Γ ц	Заключение о соответствии
1	3	4	5	6
1 Гц			2,5·10 ⁻⁵	
100 Гц			6.10-4	
1 кГц			0,205	
100 кГц			2,5	
1 МГц			25	

8080R, 8081R, 8104R						
Поверяемые	Результат	Абсолютная	Пределы	Заключение о		
точки	измерений	погрешность	допускаемой	соответствии		
		измерений	погрешности, ±,			
			Гц			
1 Гц			2,2·10 ⁻⁵			
100 Гц			4.10-4			
1 кГц			0,202			
100 кГц			2,2			
1 МГц			22			

Результаты поверки считать положительными, если в диапазоне измерений частоты от 1 Гц до 1 МГц значения абсолютной погрешности находятся в пределах, указанных в колонке 5 таблицы 15. В противном случае мультиметр бракуется.

7.3.7 Определение абсолютной погрешности измерений температуры термопар

Определение абсолютной погрешности измерений температуры термопар проводить для мультиметров 8081R, 8104R.

Определение абсолютной погрешности измерений температуры термопар провести с помощью калибратора многофункционального 3041R. Устанавливать на калибраторе значения напряжения постоянного тока, соответствующие поверяемым значениям температуры по ГОСТ Р 8.585-2001 «ГСИ. Термопары. Номинальные статические характеристики преобразования».

Измерения проводить в следующем порядке:

- 1) выставить нуль мультиметра. Подключить провода к входу мультиметра V+; V- и закоротить. Выбрать диапазон 100 мВ, затем запустить установку нуля, нажав кнопку NULL. Символ N должен появиться на дисплее;
- 2) установить режим измерения температуры термопар, нажав кнопку SHIFT, затем DCV;
- 3) установить тип термопары, вращая ручку, нажать кнопку ENTER для подтверждения выбора;
- 4) установить компенсацию холодного спая тип «ручная компенсация», температура 0°C (вращая колесико, установить "Man _C_", затем ENTER, ввести "0", подтвердить ENTER. После установки в правой части дисплея должна появиться надпись Cold Junction Temp 0.00 °C);
- 5) подключить к входу поверяемого мультиметра калибратор;
- 6) установить на выходе калибратора сигнал в мВ в соответствии с таблицей 16;
- 7) запустить процесс измерений;
- 8) снять показания поверяемого мультиметра. Поверку провести в точках в соответствии с таблицей 16.

Результаты измерений записать в колонку 4 таблицы 16.

Таблица 16 – Режим измерений температуры термопар

Тип	Поверяемые	Соответствующее	Результаты	Абсолютная	Пределы	Заключение
термопары	значения	значение	измерений	погрешность	допускаемой	О
	температуры	напряжения	температуры Т2,	измерений,	абсолютной	соответствии
	T_1 , °C	постоянного	°C	°C	погрешности,	
		тока, мВ			±, °C	
1	2	3	4	5	6	7
К	минус 140	минус 4,669			0,08	
	0	0,0			0,08	
	500	20,644			0,08	
	1340	53,795			0,08	
J	минус 210	минус 8,095			0,08	
	0	0,0			0,08	
	500	27,393			0,08	
	1200	69,553			0,08	
В	300	0,431			0,25	
	500	1,242			0,25	
	1000	4,834			0,15	
	1820	13,820			0,15	
E	0	0,0			0,05	
	100	6,319			0,05	
	500	37,005			0,05	
	800	61,017			0,05	
R	минус 50	минус 0,226			0,25	
	0	0,0			0,25	
	300	2,401			0,25	
	600	5,583			0,25	
	1000	10,506			0,15	
	1500	17,451			0,15	
	1760	21,003			0,15	
S	0	0,0			0,15	
	500	4,233			0,15	
	1000	9,587			0,15	
	1760	18,609			0,15	
N	минус 200	минус 3,990			0,09	
	0	0,0			0,09	
	500	16,748			0,09	
	1000	36,256			0,09	
	1300	47,513			0,09	
T	минус 200	минус 5,603			0,08	
	0	0,0			0,08	
	100	4,279			0,08	
	400	20,872			0,08	

Рассчитать абсолютную погрешность измерений по формуле (3):

$$\Delta = T_2 - T_1, \tag{3}$$

где T_2 – результат измерений, °C;

 T_1 – значение температуры по ГОСТ Р 8.585-2001.

Результаты поверки считать положительными, если измеренные значения температуры всех типов термопар находятся в допускаемых пределах.

7.4 Подтверждение соответствия программного обеспечения

Номер версии встроенного программного обеспечения (ПО) высвечивается на жидкокристаллическом табло индикации (ЖК-табло) при включении. Для проверки соответствия сравнивается номер версии, высвечиваемый на ЖК-табло, с номером версии, указанной в таблице 17.

Таблица 17 - Идентификационные данные программного обеспечения мудьтиметров цифровых прецизионных 8071R, 8080R, 8081R, 8109R, 8104R

Идентификационные данные (признаки)	Значение			
	микропрограмма		ProCal	ProCal-Track
Идентификационное наименование ПО	8071R, 8080R, 8081R	8104R, 8109R		
Номер версии (идентификационный номер) ПО, не ниже	2.04	0.4.0	4.20	4.20

Результаты поверки считать положительными, если идентификационные данные совпадают с данными таблицы 17. В противном случае мультиметр бракуется.

8ОФОРМЛЕНИЕ РЕЗУЛЬТАТОВ ПОВЕРКИ

- 8.1 При положительных результатах поверки оформляется свидетельство о поверке установленного образца в установленном порядке.
- 8.2 При отрицательных результатах поверки выдается извещение о непригодности с указанием причины непригодности.
- 8.3 Знак поверки наносится на боковую поверхность мультиметра и (или) на свидетельство о поверке в виде наклейки или оттиска.

Начальник лаборатории 610 ФГУП «ВНИИФТРИ»

С.В. Шерстобитов