УТВЕРЖДАЮ

Государственная система обеспечения единства измерений Датчики газов PI-700 фирмы «DETCON Inc.», CША

МЕТОДИКА ПОВЕРКИ
МП 242-0520-2007

Руководитель научно-исследовательского отдела государственных эталонов в области физико-химических измерений ГЦИ СИ "ВНИИМ им. Д.И. Менделеева"

2008 г.
Научный сотрудник

Н.Б. Шор

Санкт-Петербург
2008 г.

Настоящая методика поверки распространяется на датчики газов PI-700 (в дальнейшем датчики), выпускаемые фирмой «DETCON Inc», CША, и устанавливает методику их первичной поверки (при ввозе на территорию РФ и после ремонта) и периодической поверки в процессе эксплуатации.

Межповерочный интервал - 1 год.
1 Операции поверки
1.1 При проведении поверки выполняют операции, указанные в таблице 1.

Таблица 1

Наименование операұии	Номер пункта методики поверки	Проведение операчии при	
		первичной поверке	периодической поверке
1 Внешний осмотр	6.1	да	да
2 Опробование	6.2		
2.1 Проверка общего функционирования датчика	6.2.2	да	да
3 Определение метрологических характеристик - определение основной погрешности - определение вариации показаний	$\begin{gathered} \hline 6.3 \\ \\ 6.3 .1 \\ 6.3 .2 \end{gathered}$	$\begin{aligned} & \text { да } \\ & \text { да } \end{aligned}$	$\begin{aligned} & \text { да } \\ & \text { да } \end{aligned}$

1.2 Если при проведении той или иной операции поверки получен отрицательный результат, дальнейшая поверка прекращается.
1.3 Определение основной погрешности проводится:

- по поверочным газовым смесям определяемых компонентов в соответствии с п.6.3.1.1 при первичной поверке и один раз в 3 года при периодической поверке.
- по газовым смесям изобутилена в воздухе в соответствии с п.6.3.1.2 при первичной и периодической поверках (для веществ, имеющих коэффициент пересчета, приведенного в таблице А. 1 Приложения A).

2 Средства поверки

2.1 При проведении поверки применяют средства, указанные в таблице 2.

Таблица 2

Номер пункта методики поверки	Наименование и тип основного или вспомогательного средства поверки; обозначение нормативного документа, регламентирующего технические требования и (или) метрологические (МХ) и основные технические характеристики средства поверки
	Парофазные источники газовых смесей ПИГС по ТУ 4215-001-20810646-99 (№ 18358 -06 в Госреестре РФ), диапазон концентраций от 0,5 до $1000 \mathrm{mг} / \mathrm{m}^{3}$, пределы допускаемой относительной погрешности $\pm(7-10) \%$ Перечень ПИГС и их метрологические характеристики приведены в таблице A. 1 Приложения A
- <-	Генератор газовых смесей ГГС-03-03 по ШДЕК.418313.001 ТУ (№ 19351-05 в Госреестре РФ) в в комплекте со стандартными образцами состава: газовые смеси $\mathrm{H}_{2} \mathrm{~S} / \mathrm{N}_{2}, \mathrm{NH}_{3} / \mathrm{N}_{2}, \mathrm{NO} / \mathrm{N}_{2}, \mathrm{NO}_{2} / \mathrm{N}_{2}$ в баллонах под давлением по ТУ 6-16-2956-92, ПГС изобутилен/воздух, $\mathrm{C}_{5} \mathrm{H}_{12} /$ азот - эталонный материал ВНИИМ №№ 06.02.631, ЭМ № 06.02.908, 06.01.870 по МИ 2590-2006 (в баллонах под давлением). Пределы допускаемой относительной погрешности $\pm 7 \%$. Номер ПГС по реестру ГСО и МХ приведены в таблице А. 1 Приложения А

$\begin{aligned} & 6.3 .1, \\ & 6.3 .2 \end{aligned}$	Генератор термодиффузионный ТДГ-01 по ШДЕК.418319.001 ТУ (№ 19454-05 в Госреестре РФ) в комплекте с источниками микропотоков ИМ газов и паров по ИБЯЛ. 418319.013 ТУ (№ 15075-06 в Госреестре РФ), Диапазон концентраций от 0,05 до $100 \mathrm{mг} / \mathrm{m} 3$, пределы допускаемой относительной погрешности $\pm(8-5) \%$
- <-	Динамическая установка ГДУ-3Л гЯ.6433.00.00.000 ТО для получения ПГС на основе гидразина, диапазон концентраций от 0,05 до $4 \mathrm{mr} / \mathrm{m} 3$, пределы относительной погрешности $\pm 5 \%$
- «-	ГСО-ПГС $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH} / \mathrm{N}_{2}$ по ТУ 6-16-2956-92 . Номер ПГС по реестру ГСО и МХ приведены в таблице А. 1 Приложения А
- «-	ГС С ${ }_{5} \mathrm{H}_{12} /$ азот, $\mathrm{i}^{-\mathrm{C}_{4} \mathrm{H}_{10} / \text { воздух, бутадиен/воздух, } \mathrm{C}_{2} \mathrm{H}_{4} / \text { азот, } \mathrm{C}_{6} \mathrm{H}_{14} / \text { азот, }}$ $\mathrm{C}_{3} \mathrm{H}_{6}$ /азот, изобутилен/воздух - эталонный материал ВНИИМ ЭМ №№ 06.01.870, 06.01.880, 06.01.1012, 06.01.784, 06.01.878, 06.01.884, №№ 06.02.630, 06.02.631 по МИ 2590-2006
- «-	Поверочный нулевой газ (ПНГ) - воздух в баллонах под давлением по ТУ 6-21-5-85 или генератор нулевого воздуха ГНГ-01 ШДЕК.418312.001 ТУ
- <-	Секундомер СО СПР-2 по ГОСТ 5072-79, кл. 3
5	Барометр-анероид М-67 по ТУ 2504-1797-75. Цена деления 1 мм.рт.ст.
- «-	Психрометр аспирационный М-34-М по ГРПИ 405132.001 ТУ. Диапазон измерений относительной влажности (10-100) \%
- «-	Термометр лабораторный ТЛ4 по ГОСТ 28498-90. Диапазон измерений ($0-50$) 0 C . Цена деления $0,10 \mathrm{C}$
6.3	Ротаметр РМ-А-0,16 ГУЗ по ГОСТ 13045-81. Верхний предел диапазона измерений $0,16 \mathrm{~m}^{3} / \mathrm{\varphi}$
- «-	Кран поворотный механический КМПТ1(4)-321. ТУ 6-87 5E4.460.175 ТУ
- «-	Вентиль точной регулировки по ТУ 5Л4.463.003-02
- «-	Редуктор баллонный ДКД 8-65 по ТУ 26-05-235-70
- «-	Трубка фторопластовая
- <-	Трубка поливинилхлоридная (ПВХ) 6x1,5 мм по ТУ 64-2-286-79
- «-	Калибровочный адаптер
- «-	Емкость стеклянная (бутыль или колба)
- «"-	Устройство АБП-04 ИРМБ 4362.025 ПС для отбора (прокачивания) газовых проб с расходом $(0,5-1,7)$ дм ${ }^{3} /$ мин

2.2 Допускается применение других средств, не приведенных в таблице, но обеспечивающих определение метрологических характеристик датчиков с требуемой точностью.
2.3 Все средства поверки должны иметь действующие свидетельства о поверке, поверочные газовые смеси в баллонах под давлением - действующие паспорта.

3 Требования безопасности

При проведении поверки соблюдают следующие требования безопасности:
3.1 Помещение, в котором проводят поверку, должно быть оборудовано приточно-вытяжной вентиляцией.
3.2 Концентрации вредных компонентов в воздухе рабочей зоны должны соответствовать требованиям ГОСТ 12.1.005-88.
3.3 При работе с чистыми газами и газовыми смесями в баллонах под давлением соблюдают "Правила устройства и безопасной эксплуатации сосудов, работающих под давлением", утвержденные Госгортехнадзором.

4 Условия поверки
При проведении поверки соблюдают следующие условия:

- температура окружающей среды, ${ }^{\circ} \mathrm{C}$
- относительная влажность окружающей среды, \%

от 30 до 80

- атмосферное давление, кПа от 90,6 до 104,8.

5 Подготовка к поверке
5.1 Перед проведением поверки выполняют следующие подготовительные работы:

1) подготавливают датчик к работе в соответствии с требованиями Руковод̆ства по эксплуатации;
2) проверяют наличие паспортов и сроки годности ПГС;
3) баллоны с ПГС выдерживают в помещении, в котором проводят поверку, в течение 24 ч, поверяемые датчики в течение 3 ч;
4) подготавливают к работе средства поверки в соответствии с требованиями их эксплуатационной документации;

6 Проведение поверки

6.1 Внешний осмотр

При внешнем осмотре устанавливают соответствие датчиков следующим требованиям:

- отсутствие внешних повреждений, влияющих на работоспособность;
- исправность органов управления;
- четкость надписей на лицевой панели.
- маркировка и комплектность должна соответствовать требованиям РЭ;

Датчики считают выдержавиими внешний осмотр, если они соответствуют указанным выше требованиям.

6.2 Опробование

6.2.1 При опробовании проводят проверку общего функционирования датчика в следующем порядке:

1) включают электрическое питание датчика;
2) выдерживают датчик во включенном состоянии в течение времени прогрева;
3) фиксируют показания дисплея датчика.

Результат опробования считают положительным, если по окончанию времени прогрева отсутствует сигнализачия об отказах, на дисплей датчика выводится измерительная информация.
6.3. Определение метрологических характеристик
6.3.1. Определение основной приведенной (относительной) погрешности проводят

- по поверочным газовым смесям или ГСО-ПГС, содержащим определяемый компонент (приведены в таблице А2 Приложения А), и поверочным газовым смесям (ПГС), содержащим поверочный компонент (изобутилен) при первичной поверке и один раз в 3 года при периодической поверке;
- по поверочным газовым смесям, содержащим поверочный компонент (изобутилен) при периодической поверке (для веществ, имеющих коэффициент пересчета, приведенного в таблице A. 1 Приложения А). Для определяемых веществ, не имеющих коэффициент пересчета, периодическая поверка проводится по ПГС этих веществ.

Определение основной приведенной (относительной) погрешности проводят в диапазонах, приведенных в таблице А. 1 Приложения A, для каждого компонента при поочередной подаче на датчики поверочных газовых смесей в последовательности: №№ 1-2-3-2-1-3 и отсчете показаний датчиков. Номинальные значения содержания определяемых компонентов ПГС приведены в таблице А. 1 Приложения А.
6.3.1.1. Определение основной погрешности по поверочным газовым смесям определяемых компонентов

Подачу ПГС определяемых компонентов, получаемых при помощи ПИГС, осуществляют следующим образом:

вначале подают ПГС № 1 (нулевой воздух) - открывают баллон с воздухом с помощью вентиля точной регулировки, устанавливают расход в пределах ($0,27-0,30$) дм ${ }^{3} /$ мин, контролируя по ротаметру, и подают через адаптер прямо на датчик;

потом подают ПГС №№ 2, 3, в зависимости от исполнений ПИГС подача ПГС осуществляется двумя способами:

1-ый способ - для ПИГС исполнений «Э» и «М» - открывают баллон с воздухом с помощью вентиля точной регулировки, устанавливают расход в пределах $(0,27-0,30)$ дм $^{3} / \mathrm{M} и н$, контролируя по ротаметру, и подают через ПИГС (исполнений «Э» и «М») на датчик;

2-ой-способ - для ПИГС исполнения «У» - подают воздух из баллона через ПИГС (исполнения «У») в стеклянную емкость вместимостью 5 дм 3, проводят 10 -ти кратную продувку емкости с расходом не более $0,15 \mathrm{дm}^{3} /$ мин, после этого отсоединяют емкость от ПИГС и через устройство АБП-04 подсоединяют к ней датчик; подачу ПГС проводят по замкнутому циклу: емкость с ПГС устройство АБП-04 - адаптер датчика - емкость с ПГС.

Подачу с выхода генератора (установки) проводят при помощи фторпластовой или ПХВ трубки с расходом $(0,3-0,5)$ дм $^{3} /$ мин. Если расход на выходе генератора (установки) превышает 0,5 дм $^{3} /$ мин, подачу ПГС на датчик осуществляют через байпас (тройник), контроль расхода через датчик осуществляют при помощи ротаметра.

При подаче ПГС из баллона контроль расхода ($0,3-0,5$) дм $^{3} /$ мин осуществляют при помощи ротаметра.

Считывание показаний датчиков осуществляют через 30 с после начала подачи ПГС.
Значения основной приведенной погрешности (γ в \%) рассчитывают для ПГС №№ 1 и 2 по формуле (1):

$$
\begin{equation*}
\gamma=\frac{X_{\text {изм }}-X_{\text {д }}}{X_{\text {в }}} \cdot 100 \tag{1}
\end{equation*}
$$

где $\mathrm{X}_{\text {изм. }}$ - измеренное значение объемной доли определяемого компонента, млн ${ }^{-1}$;
$\mathrm{X}_{\text {д }}$ - действительное значение объемной доли определяемого компонента в ПГС, млн ${ }^{-1}$; X_{B} - верхний предел диапазона измерений, млн ${ }^{-1}$.

Полученные значения основной приведенной погрешности не должны превышать значений, приведенньхх в таблице Б. 1 ПриложенияБ.

Значения основной относительной погрешности (δ в \%) рассчитываются для ПГС № 3 по формуле (2):

$$
\begin{equation*}
\delta=\frac{\mathrm{X}_{\text {изм }}-\mathrm{X}_{\text {д }}}{\mathrm{X}_{\text {д }}} \cdot 100 \tag{2}
\end{equation*}
$$

где $\mathrm{X}_{\text {изм }}$ - измеренное значение объемной доли определяемого компонента, млн ${ }^{-1}$;
$\mathrm{X}_{\text {д }}$ - действительное значение объемной доли определяемого компонента в ПГС, млн ${ }^{-1}$.
Полученные значения основной относительной погрешности не должны превышать значений, приведенных в таблице Б. 1 Приложения Б.
6.3.1.2. Определение основной погрешности по поверочному компоненту - поверочным газовым смесям изобутилена в воздухе

Определение основной погрешности проводят в соответствии с п.6.3.1.1. при подаче ПГС изобутилена в воздухе, находящихся в баллонах под давлением или получаемых на генераторе ГГС-03-03.

Основную погрешность рассчитывают по формулам:

$$
\begin{align*}
& \gamma=\frac{\mathrm{X}_{\text {изм }}-K \cdot \mathrm{X}_{\text {д }}}{\mathrm{X}_{\mathrm{B}}} \cdot 100 \tag{3}\\
& \delta=\frac{\mathrm{X}_{\text {изм }}-K \cdot \mathrm{X}^{n}{ }_{\text {д }}}{\mathrm{X}_{\text {д }}} \cdot 100 \tag{4}
\end{align*}
$$

где $\quad X_{0}^{n}$ - действительное значение содержания поверочного компонента (изобутилена) в ПГС, млн ${ }^{-1}$;

К - коэффициент пересчета содержания поверочного компонента (изобутилена) в содержание определяемого компонента (приведен в таблице А1 Приложения А).

Полученные значения основной (приведенной или относительной) погрешности не должньь превышать значений, приведенных в таблице Б. 1 Приложения Б.
6.3.2 Определение вариации показаний

Определение вариации показаний допускается проводить одновременно с определением основной погрешности по п. 6.3.1.

Значение вариации показаний для ПГС № 2 (b в долях от пределов основной погрешности), рассчитывают по формулам:

$$
\begin{align*}
& b=\frac{X_{\sigma}-X_{M}}{X_{\mathrm{B}} \cdot \gamma} \cdot 100 \tag{5}\\
& b=\frac{X_{\sigma}-X_{M}}{X_{\text {д }} \cdot \delta} \cdot 100 \tag{6}
\end{align*}
$$

где: $\mathrm{X}_{б}\left(\mathrm{X}_{м}\right)$ - измеренное газоанализатором значение концентрации анализируемого газа в ПГС при подходе к точке проверки со стороны больших (меньших) значений, млн ${ }^{-1}$;
$\gamma(\delta)$ - предел основной приведенной (относительной) погрешности, \%.

Полученные значения вариаұии не должны превышать 0,5 долей от пределов допускаемой основной погрешности.

7 Оформление результатов поверки

7.1. При проведении поверки датчиков составляют протокол результатов поверки, форма которого приведена в Приложении В.
7.2. Датчики, удовлетворяющие требованиям настоящей методики, признают годными к эксплуатации.
7.3. Положительные результаты поверки оформляют свидетельством о поверке установленной формы согласно ПР 50.2.006-94.
7.4. При отрицательных результатах поверки эксплуатацию датчиков запрещают и выдают извещение о непригодности установленной формы согласно ПР 50.2.006-94 с указанием причин непригодности.

ПГС, используемые при поверке датчиков газов PI-700

Определяемый компонент	Диапазон измере- ний, млн ${ }^{-1}$ (ppm)	Номинальное значение объемной доли определяемого компонента в ПГС ($\mathrm{X}_{\text {опр }}$), пределы допускаемого отклонения, млн ${ }^{-1}$			Источник получения ПГС	Коэффициент пересчета K (в соответствии с РЭ на датчик)
		ПГС №1	ПГС №2	ПГС №3		
1	2	3	4	5	6	7
Изобутилен	$\begin{array}{\|l\|} \hline 0-50 \\ 50-300 \end{array}$	ПНГвоздух	50 \pm *	270 ± 30	Генератор ГГС-03-03 в комплекте с ГС изобутилен/воздух ЭММ № 06.02.631 ${ }^{1 \text { 1 }}$ Газовые смеси изобутилен/воздух - ЭМ №№ 06.02.630, 06.02.631 ${ }^{1 \text { 1 }}$	1,0
Аммиак NH_{3}	$\begin{array}{\|l\|} \hline 0-30 \\ 30-200 \end{array}$	- «-	30 ± 3	180 ± 20	Генератор ГГС-03-03 в комплекте с ГСО- ПГС $\mathrm{NH}_{3} / \mathrm{N}_{2}$ №-427988 по ТУ 6-16-2956-92	-
Ацетон	$\begin{array}{\|l\|} \hline 0-80 \\ 80-300 \end{array}$	- «-	80 ± 10	270 ± 30	Генератор ТДГ-01 в комплекте с источниками микропотоков ИМ ацетона по ИБЯЛ. 418319.013 ТУ	1,1
Бензол	$\begin{aligned} & 0-10 \\ & 10-20 \end{aligned}$	- «-	10 ± 1	18 ± 2	Парофазный источник бензола № ПИГС-У-06²) или генератор ТДГ-01 в комплекте с источниками микропотоков ИМ бензола по ИБЯЛ.418319.013 ТУ	0,5
Бутадиен $(44,4 \mathrm{ppm})$	$\begin{aligned} & \hline 0-50 \\ & 50-300 \end{aligned}$	- «-	50 ± 5	270 ± 30	$\begin{aligned} & \text { ПГС бутадиен/воздух - ЭМ № } \\ & \text { 06.02.1012 } \end{aligned}$	0,85
Бутанол (3 ppm)	$\begin{aligned} & \hline 0-10 \\ & 10-20 \end{aligned}$	$\begin{aligned} & \text { ПНГ- } \\ & \text { воздух } \end{aligned}$	10 ± 1	18 ± 2	Генератор ТДГ-01 в комплекте с источниками микропотоков ИМ бутанола по ИБЯЛ.418319.013 TY	4,7
Бутилаце- тат $(40 \mathrm{ppm})$	$\begin{aligned} & 0-40 \\ & 40-200 \end{aligned}$	- «-	40 ± 4	180 ± 20	Генератор ТДГ-01 в комплекте с источниками микропотоков ИМ ацетона по ИБЯЛ. 418319.013 ТУ	2,6
Бутилмеркаптан	0-20	- «-	10 ± 1	18 ± 2	Генератор ТДГ-01 в комплекте с источниками микропотоков ИМ бутилмеркаптана по ИБЯЛ. 418319.013 ТУ	0,52
Сероуглерод (0,3 ppm)	0-20	- «-	10 ± 1	18 ± 2	Генератор ТДГ-01 в комплекте с источниками микропотоков ИМ сероуглерода по ИБЯЛ. 418319.013 ТУ	1,2

1	2	3	4	5	6	7
Хлорбен- зол $(15 / 7,5)$	$\begin{aligned} & 0-20 \\ & 20-100 \end{aligned}$	- < -	20 ± 2	90 ± 10	Генератор ТДГ-01 в комплекте с источниками микропотоков ИМ хлорбензола по ИБЯЛ. 418319.013 ТУ	0,4
Циклогексан $(14,3)$	$\begin{aligned} & \hline 0-20 \\ & 20-100 \end{aligned}$	- «<-	20 ± 2	90 ± 10	Генератор ТДГ-01 в комплекте с источниками микропотоков ИМ циклогексана ИБЯЛ. 418319.013 ТУ	1,4
Циклогексанон $(2,5)$	$\begin{aligned} & 0-10 \\ & 10-20 \end{aligned}$	- <<-	10 ± 1	18 ± 2	Генератор ТДГ-01 в комплекте с источниками микропотоков ИМ циклогексанона по ИБЯЛ. 418319.013 ТУ	0,9
Декан	0-20	- < -	10 ± 1	18 ± 2	Генератор ТДГ-01 в комплекте с источниками микропотоков ИМ декана по ИБЯЛ.418319.013 ТУ	1,4
Этанол	$\begin{aligned} & 0-500 \\ & 500-1000 \end{aligned}$	- < -	500 ± 50	900 ± 100	ПГС, приготовленные в соответствии с МВИ-1-03-95-2	12
Этилен $(86,2)$	$\begin{aligned} & 0-80 \\ & 80-500 \end{aligned}$	- <-	80 ± 10	450 ± 50	$\begin{array}{llll} \hline \text { ПГС } & \mathrm{C}_{2} \mathrm{H}_{4} / \text { воздух } & \text { ЭМ } \\ 06.01 .784^{1)} \end{array}$	10
Этилацетат (41)	$\begin{aligned} & 0-40 \\ & 40-100 \end{aligned}$	- < -	40 ± 10	90 ± 10	Генератор ТДГ-01 в комплекте с источниками микропотоков ИМ этилацетата по ИБЯЛ. 418319.013 ТУ	4,6
Этиленоксид $(0,5)$	0-20	- < -	10 ± 1	18 ± 2	Генератор ТДГ-01 в комплекте с источниками микропотоков ИМ этиленоксида ИБЯЛ. 418319.013 ТУ	13
Этилмеркаптан $(0,39)$	0-20	- «-	10 ± 1	18 ± 2	Генератор ТДГ-01 в комплекте с источниками микропотоков ИМ этилмеркаптана по ИБЯЛ. 418319.013 ТУ	0,56
Гептан	$\begin{aligned} & 0-20 \\ & 20-100 \end{aligned}$	- < -	20 ± 2	90 ± 10	Генератор ТДГ-01 в комплекте с источниками микропотоков ИМ гептана по ИБЯЛ.418319.013 ТУ	2,8
Гексан (81)	$\begin{aligned} & \hline 0-80 \\ & 80-1000 \end{aligned}$	ПНГвоздух	80 ± 10	900 ± 100	$\begin{array}{llll} \hline \text { ГС } & \mathrm{C}_{6} \mathrm{H}_{14} / \text { воздух } & \text { ЭМ } \\ 06.01 .878^{1)} \end{array}$	4,3
$\begin{aligned} & \text { Гидразин } \\ & (0,08) \end{aligned}$	0-10	- < -	$5 \pm 0,5$	9 ± 1	Динамическая \quad установка ГДУ-3Л гЯ. 6433.00 .00 .000 ТО для получения ПГС на основе гидразина	2,6
Изобутан	$\begin{aligned} & 0-20 \\ & 20-200 \end{aligned}$	- < -	20 ± 2	90 ± 10	Генератор ГГС-03-03 в комплекте с ГС і-С $\mathrm{C}_{4} \mathrm{H}_{10} /$ воздух ЭМ № $06.01 .880^{1)}$	1,00
Метилмеркаптан $(0,41)$	0-20	- «-	10 ± 1	18 ± 2	Генератор ТДГ-01 в комплекте с источниками микропотоков ИМ метилмеркаптана по ИБЯЛ. 418319.013 ТУ	0,54

1	2.	3	4	5	6	7
Оксид азота (4)	$\begin{aligned} & 0-10 \\ & 10-20 \end{aligned}$	- «-	10 ± 1	18 ± 2	Генератор ГГС-03-03 в комплекте с ГСО- ПГС NO/ N_{2} №-402587 по ТУ 6-16-2956-92	5,2
Диоксид азота (1)	$\begin{aligned} & 0-5 \\ & 5-20 \end{aligned}$	- «-	$5 \pm 0,5$	18 ± 2	Генератор ГГС-03-03 в комплекте с ГСО- ПГС $\mathrm{NO}_{2} / \mathrm{N}_{2}$ №-403087 по ТУ 6-16-2956-92	-
Нонан	0-20	- «-	10 ± 1	18 ± 2	Генератор ТДГ-01 в комплекте с источниками микропотоков иМ нонана по ИБЯЛ. 418319.013 ТУ	1,4
Октан	0-20	- «-	10 ± 1	18 ± 2	Генератор ТДГ-01 в комплекте с источниками микропотоков ИМ октана по ИБЯЛ. 418319.013 ТУ	1,8
$\begin{array}{\|l} \hline \text { Пентан } \\ (100) \end{array}$	$\begin{array}{\|l\|} \hline 0-100 \\ 100-2000 \end{array}$	- «-	100 ± 10	1800 ± 200	$\begin{aligned} & \text { Генератор ГГС-03-03 в комплек- } \\ & \text { те с Г ГС } \\ & 06.01 .870^{1)} \end{aligned}$	-
$\begin{aligned} & \hline \text { Фенол } \\ & (0,08) \end{aligned}$	0-10	- «-	$5 \pm 0,5$	9 ± 1	Парофазный источник фенола № ПИГС-Э-01 ${ }^{2}$	1,0
Пропанол (5)	$\begin{array}{\|l\|} \hline 0-10 \\ 10-100 \end{array}$	- «-	20 ± 2	90 ± 10	Генератор ТДГ-01 в комплекте с источниками микропотоков ИМ пропанола по ИБЯЛ. 418319.013 TV	5,0
$\begin{aligned} & \text { Сероводо- } \\ & \text { род } \\ & \mathrm{H}_{2} \mathrm{~S} \end{aligned}$	$\begin{array}{\|l\|} \hline 0-10 \\ 10-100 \end{array}$	- «-	10 ± 1	90 ± 10	Генератор ГГС-03-03 в комплекте с ГСО- ПГС $\mathrm{H}_{2} \mathrm{~S} / \mathrm{N}_{2}$ №-443188 по ТУ 6-16-2956-92	3,3
Стирол	$\begin{aligned} & 0-20 \\ & 20-100 \end{aligned}$	- «-	20 ± 2	90 ± 10	Парофазный источник стирола №ПИГС-М-02 ${ }^{2)}$	0,4
Ксилол	$\begin{aligned} & 0-10 \\ & 10-100 \end{aligned}$	- «-	10 ± 1	90 ± 10	Парофазный источник ксилола № ПИГС-М-032) или генератор ТДГ-01 в комплекте с источниками микропотоков газов и паров ИМ ксилола по ИБЯЛ. 418319.013 ТУ	0,5
Толуол	$\begin{aligned} & 0-10 \\ & 10-100 \end{aligned}$	- «-	10 ± 1	90 ± 10	Парофазный источник толуола №ПИГС-У-10 $0^{2)}$ или генератор ТДГ-01 в комплекте с источниками микропотоков газов и паров ИМ толуола по ИБЯЛ. 418319.013 ТУ	0,50
Пропилен $(57,1)$	$\begin{aligned} & 0-50 \\ & 50-300 \end{aligned}$	-«-	50 ± 5	270 ± 30	$\begin{array}{ll}\text { ПГС } \\ 06.01 .884^{1}\end{array} \mathrm{C}_{3} \mathrm{H}_{6} /$ воздух ЭМ №	1,4
Моноэтаноламин $(0,3)$	0-10	- «-	$5 \pm 0,5$	9 ± 1	Генератор ТДГ-01 в комплекте с источниками микропотоков ИМ моноэтаноламина по иБял.418319.013 Ту	-

Примечания:

1. При проведении периодической поверки с использованием ПГС изобутилен/воздух применяется генератор ГГС-03-03 в комплекте с ГС изобутилен/воздух - ЭМ № 06.02.631. Для ксилола, толуола, стирола генератор ГГС-03-03 в комплекте с ГС изобутилен/воздух - ЭМ № 06.02.908.

Значение объемной доли (X^{n}) поверочного компонента (изобутилена) для точек поверки №№ 2 и 3 рассчитывается по формуле

$$
X^{n}=\frac{X_{\text {onp }}}{K}
$$

Где $\mathrm{X}_{\text {опр }}$ - номинальное значение объемной доли определяемого компонента, млн ${ }^{-1}$, приведенное в табл.А1 (графы 4 и 5);

К - коэффициент пересчета содержания поверочного компонента (изобутилена) в содержание определяемого компонента, приведен в таблицах A1 (графа 7).

Для определяемых веществ, не имеющих коэффициент пересчета, периодическая поверка проводится, по ПГС этих веществ, приведенных в таблице А1.
2. * Для получения ПГС изобутилена с объемной долей 50 млн $^{-1}$ используют генератор ГГС-03-03 в комплекте с ГС изобутилен/воздух - ЭМ № 06.02.631.
${ }^{\text {1) }}$) ГС компонентов - эталонный материал (ЭМ) ВНИИМ по МИ 2590-2006, каталог 2006-2007 г.г.
${ }^{2)}$ ПИГС - парэфазный источник газовой смеси по ТУ 4215-001-20810646-2006.
3. Поверочный нулевой газ (ПНГ) - воздух в баллонах под давлением, выпускаемый по Ту 6-21-582.
4. Изготовители и поставщики ГСО-ПГС:

ООО "Мониторинг", г. Санкт-Петербург, Московский пр., 19, тел (812) 315-11-45, факс (812) 327-9776;

ООО "ПГС - Сервис", 624250, Свердловская обл., г. Заречный, ул. Мира, 35.

Эсновные метрологические характеристики датчиков газов PI-700

Определяемый компонент (ПДК млн ${ }^{-1}$ (ppm)	Диапазон измерений (показаний), млн $^{-1}(\mathrm{ppm})$	Пределы допускаемой основной погрешности, \%		Назначение
		приведенной	относительной	
1	2	3	4	5
Изобутилен (изобутен) (42 ppm)	$\begin{gathered} 0-50 \\ 50-300 \\ (300-2000) \end{gathered}$	± 15	± 15	Контроль ПДК
Аммиак $(28 \mathrm{ppm})$	$\begin{gathered} 0-30 \\ 30-200 \\ (200-2000) \end{gathered}$	± 15	± 15	Контроль ПДК При аварийных ситуациях
Ацетон (85 ppm)	$\begin{gathered} 0-80 \\ 80-300 \\ (300-2000) \end{gathered}$	± 20	± 20	Контроль ПДК
Бензол (5 ppm)	$\begin{gathered} 0-10 \\ 10-20 \\ (20-2000) \end{gathered}$	± 20	± 20	При аварийных ситуациях
Бутадиен $(44,4 \mathrm{ppm})$	$\begin{gathered} 0-50 \\ 50-300 \\ (200-2000) \end{gathered}$	± 20	± 20	Контроль ПДК
Бутанол (3 ppm)	8 $0-10$ $=$ $10-20$ $:$ $(20-2000)$	± 20	± 20	При аварийных ситуациях
Бутилацетат (40 ppm)	$\begin{gathered} 0-40 \\ 40-200 \\ (20-2000) \end{gathered}$	± 20	± 20	Контроль ПДК
Бутилмеркаптан	$\begin{gathered} 0-20 \\ (20-100) \end{gathered}$	± 20	-	ПДК отсутствует
$\begin{gathered} \hline \text { Сероуглерод } \\ (0,3 \mathrm{ppm}) \end{gathered}$	$\begin{gathered} 0-20 \\ (20-100) \end{gathered}$	± 20	-	При аварийных ситуациях
Хлорбензол $(15 / 7,5)$	$\begin{gathered} 0-20 \\ 20-100 \end{gathered}$	± 20	± 20	Контроль ПДК
Циклогексан $(14,3)$	$\begin{gathered} 0-20 \\ 20-100 \end{gathered}$	± 20	± 20	При аварийных ситуациях

1	2	3	4	5
Циклогексанон $(2,5)$	$\begin{gathered} 0-10 \\ 10-20 \\ (20-2000) \end{gathered}$	± 20	± 20	При аварийных ситуациях
Декан	$\begin{gathered} 0-20 \\ (20-100) \end{gathered}$	± 20		ПДК отсутствует
$\begin{gathered} \text { Этанол } \\ (520 \mathrm{ppm}) \end{gathered}$	$\begin{gathered} 0-500 \\ 500-1000 \\ (1000-2000) \end{gathered}$	± 15	± 15	Контроль ПДК
$\begin{gathered} \text { Этилен } \\ (86,2) \end{gathered}$	$\begin{gathered} 0-80 \\ 80-500 \\ (500-2000) \end{gathered}$	± 15	± 15	- «-
Этилацетат (41)	$\begin{gathered} 0-40 \\ 40-100 \\ (100-1000) \end{gathered}$	± 20	± 20	- «-
Этиленоксид $(0,5)$	$\begin{gathered} 0-20 \\ (20-100) \end{gathered}$	± 20		При аварийных ситуациях
Этилмеркаптан $(0,39)$	$\begin{gathered} 0-20 \\ (20-100) \end{gathered}$	± 20		- <-
Гептан	$\begin{gathered} 0-20 \\ 20-100 \end{gathered}$	± 20	± 20	ПДК отсутствует
Гексан (81)	$\begin{gathered} 0-80 \\ 80-1000 \\ (1000-2000) \end{gathered}$	± 15	± 15	Контроль ПДК
$\begin{gathered} \text { Гидразин } \\ (0,08) \end{gathered}$	$\begin{gathered} 0-10 \\ (10-20) \end{gathered}$	± 20		При аварийных ситуациях
Изобутан	$\begin{gathered} 0-20 \\ 20-200 \end{gathered}$	± 20	± 20	ПДК отсутствует
Метилмеркаптан $(0,41)$	$\begin{gathered} 0-20 \\ (20-100) \end{gathered}$	± 20		При аварийных ситуациях
Оксид азота (4)	$\begin{gathered} 0-10 \\ 10-20 \\ (20-2000) \end{gathered}$	± 20	± 20	- «-
Диоксид азота (1)	$\begin{gathered} 0-5 \\ 5-20 \\ (20-2000) \end{gathered}$	± 20	± 20	При аварийных ситуациях

1	2	3	4	5
Нонан	$\begin{gathered} 0-20 \\ (20-2000) \end{gathered}$	± 20		ПДК отсутствует
Октан	$\begin{gathered} 0-20 \\ (20-2000) \end{gathered}$	± 20		- «-
Пентан (100)	$\begin{gathered} 0-100 \\ 100-2000 \end{gathered}$	± 15	± 15	Контроль ПДК
$\begin{aligned} & \text { Фенол } \\ & (0,08) \end{aligned}$	$\begin{gathered} 0-10 \\ (10-20) \end{gathered}$			При аварийных ситуациях
Пропанол (5)	$\begin{gathered} 0-10 \\ 10-100 \end{gathered}$	± 20	± 20	- «- -
Сероводород (7 ppm)	$\begin{gathered} 0-10 \\ 10-100 \\ (100-2000) \end{gathered}$	± 20	± 20	Контроль ПДК
$\begin{aligned} & \hline \text { Стирол } \\ & (6,9 / 2,3) \end{aligned}$	$\begin{gathered} 0-20 \\ 20-100 \end{gathered}$	± 20	± 20	При аварийных ситуациях
$\begin{aligned} & \text { Ксилол } \\ & (10 \mathrm{ppm}) \end{aligned}$	$\begin{gathered} 0-10 \\ 10-100 \\ (100-2000) \end{gathered}$	± 20	± 20	Контроль ПДК
$\begin{aligned} & \text { Толуол } \\ & (13 \mathrm{ppm}) \end{aligned}$	$\begin{gathered} 0-10 \\ 10-100 \\ (100-2000) \end{gathered}$	± 20	± 20	Контроль ПДК
Пропилен $(57,1)$	$\begin{gathered} 0-50 \\ 50-500 \\ (500-2000) \end{gathered}$	± 15	± 15	Контроль ПДК
Моноэтаноламин $(0,3)$	$\begin{gathered} 0-10 \\ (10-20) \end{gathered}$	± 20		При аварийных ситуациях

